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Sources and Consequences of Spatial Autocorrelation

Sources and Consequences of Spatial Autocorrelation

When we detect an apparent spatial autocorrelation (on residuals for ins-
tance), this spatial autocorrelation may or may not be the result of a spatial
autocorrelation.

In 1984, Miron identi�ed three sources of apparent or real spatial
autocorrelation :

interaction

reaction

misspeci�cation
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Sources and Consequences of Spatial Autocorrelation

Sources of spatial autocorrelation : example

Imagine a population of plants growing in a particular region :

Yi measurement of plant productivity (tree height or population density).

Population is su�ciently dense relative to the spatial scale ⇒ productivity
measurement may be modeled as varying continuously with the location.

Xi1 the amount of light available at location i .

Xi2 the amount of available nutrients at location i .

Using these two explanatory variables, the simplest model is :

Yi = β0 + β1Xi1 + β2Xi2 + εi , with εi ∼
i.i.d.
N (0, σ2). (1)

In matrix notation :

Y = Xβ + ε (2)

ε ∼ N (0, σ2I ).

The following three notions can be combined in a same model.
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Sources and Consequences of Spatial Autocorrelation Source : interaction

Source : interaction

Spatial autocorrelation induced by interaction occurs when the response

variables at di�erent sites interact with each other.

Negative autocorrelation may occur if trees in close proximity compete with
each other for light and nutrients, so that relatively productive tree
populations tend to inhibit the growth of other trees.

Positive autocorrelation would occur if existing trees produced acorns that
do not disperse very far, which in turn results in more trees in the vicinity.

If Y is positively autocorrelated, the true underlying model is :

Y = Xβ + ρWY + ε (3)

ε ∼ N (0, σ2I ),

with WY the spatial lag.
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Sources and Consequences of Spatial Autocorrelation Source : interaction

Interaction : illustration using simulations (1/2)

We generate a dataset simu_modlin satisfying model (2) with β = (0, 0.5, 0.3)

and a dataset simu_interaction satisfying model (3) with β = (0, 0.5, 0.3) and

ρ = 0.6. Each dataset contains 1000 observations and X1 and X2 are simulated

independently using gaussian distributions.

mod <- lm(Ylin ~ X1 + X2)

print(coef(mod), digits = 2)

## (Intercept) X1 X2

## -0.00021 0.49979 0.30028

var(mod$res)

## [1] 9.560601e-05
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Sources and Consequences of Spatial Autocorrelation Source : interaction

Interaction : illustration using simulations (2/2)

mod <- lm(Yinter ~ X1 + X2)

print(coef(mod), digits = 2)

## (Intercept) X1 X2

## 0.028 0.556 0.316

var(mod$res)

## [1] 0.05820449
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Source : reaction

Spatial autocorrelation induced by reaction occurs when the response

variables are reacting to an external factor that varies in space, and when

this factor is not taken into account by the model.

For instance if nearby plants are reacting to availability of water (which varies in
the `space').

The inclusion of this external factor in the linear model may be appropriate. It
may be su�cient to explain the spatial autocorrelation, and to obtain
non-autocorrelated residuals.

For instance, the true model should be :

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi , with εi ∼
i.i.d.
N (0, σ2), (4)

with Xi3 the distance from the river at location i .
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (1/4)

We generate a dataset simu_reaction1 satisfying model (4) with
β = (0, 0.5, 0.3, 0.8) and X3 correlated with X2.

We �t model (4) :

print(coef(lm(Yreact1 ~ X1 + X2 + X3)), digits = 2)

## (Intercept) X1 X2 X3

## 0.0088 0.4837 0.3315 0.7716

mod <- lm(Yreact1 ~ X1 + X2)

print(coef(mod), digits = 2)

## (Intercept) X1 X2

## 0.51 0.50 1.01

X3 maybe interpreted as a `spatial' variable, but its role in the model is identical

to that of another explanatory variable without any spatial connotation.
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (2/4)

We generate a dataset simu_reaction1 satisfying model (4) with
β = (0, 0.5, 0.3, 0.8), and X3 non correlated with X1 or X2 but spatially
autocorrelated.

We �t model (4) :

mod <- lm(Yreact2 ~ X1 + X2 + X3)

print(coef(mod), digits = 2)

## (Intercept) X1 X2 X3

## 0.027 0.483 0.327 0.768

var(mod$res)

## [1] 1.003906
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (3/4)

We �t model (1) :

mod <- lm(Yreact2 ~ X1 + X2)

print(coef(mod), digits = 2)

## (Intercept) X1 X2

## 0.046 0.481 0.321

var(mod$res)

## [1] 1.863427

The e�ect of X3 which is not taken into account in this model is entirely loaded

in the error term.
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (4/4)

As X3 was spatially autocorrelated, the result is that the residuals are spatially
autocorrelated :

lm.morantest(mod,W)

##

## Global Moran I for regression residuals

##

## data:

## model: lm(formula = Yreact2 ~ X1 + X2)

## weights: W

##

## Moran I statistic standard deviate = 5.6528, p-value = 7.892e-09

## alternative hypothesis: greater

## sample estimates:

## Observed Moran I Expectation Variance

## 0.1295740253 -0.0010112445 0.0005336546
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Sources and Consequences of Spatial Autocorrelation Source : misspeci�cation

Source : misspeci�cation

The measured autocorrelation is not due to interaction or reaction but to

the incorrect form of the model.

For instance if we assume homoscedastic errors when in fact they are
heteroscedastic.

The true model should be (the variance of the errors increases with the amount of
available nutrients Xi2) :

Y = Xβ + ε (5)

εi ∼
i.i.d.

N (0, σ2 × exp(1 + 2Xi2)).

In this case, the measured autocorrelation can be induced by the wrong

modelisation, it is then an apparent autocorrelation and not a real autocorrelation

(this autocorrelation cannot be explained by spatial considerations).
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Sources and Consequences of Spatial Autocorrelation Source : misspeci�cation

Misspeci�cation : illustration using simulations (1/2)

We generate a dataset simu_modmiss satisfying model (5) with β = (0, 0.5, 0.3).
X2 spatially autocorrelated and the error variance is an increasing function of X2.

We �t model (2) :

mod <- lm(Ymiss ~ X1 + X2)

print(coef(mod, digits = 2))

## (Intercept) X1 X2

## 30.95456 -68.36515 84.34902
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Sources and Consequences of Spatial Autocorrelation Source : misspeci�cation

Misspeci�cation : illustration using simulations (2/2)

lm.morantest(mod, W)

##

## Global Moran I for regression residuals

##

## data:

## model: lm(formula = Ymiss ~ X1 + X2)

## weights: W

##

## Moran I statistic standard deviate = 2.3661, p-value = 0.008989

## alternative hypothesis: greater

## sample estimates:

## Observed Moran I Expectation Variance

## 0.159988117 -0.014521469 0.005439884

The error terms are uncorrelated, but because the error variance is a function of

X2 and high values of X2 tend to be near other high values of X2, a test for

spatial autocorrelation of the residuals has a high type I error rate.
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Sources and Consequences of Spatial Autocorrelation
Consequences of the spatial autocorrelation on classical linear

models

Consequences of the spatial autocorrelation

Interaction biased estimates of the regression coe�cients, the variance of
the residuals is in�ated ⇒ in�ated type I or II error rates of
certain tests.

reaction If the reaction variable (not included in the model) is
correlated to a variable present in the model, the estimate of
the coe�cient associated with the variable present in the
model will be biased.
If the reaction variable (not included in the model) is not
correlated to a variable present in the model, but is spatially
autocorrelated, the variance of the residuals will be in�ated,
⇒ in�ated type I or II error rates and indication of spatial
autocorrelation when none really exists.

Misspeci�cation If the model is misspeci�ed, that can lead to both biased
estimates of the regression coe�cient and indication of
spatial autocorrelation when none really exists.

Meïli Baragatti Models for Spatial Data 15/78



Working example : Las Rosas

Table of Contents

1 Sources and Consequences of Spatial Autocorrelation

2 Working example : Las Rosas

3 Spatial Lag Model

4 Spatial Error Model

5 Choosing Between Spatial Lag and Spatial Error models

6 Extended Linear Models

7 Bibliography

Meïli Baragatti Models for Spatial Data 15/78



Working example : Las Rosas

Spatial regression models in practice (1/2)

1 Fit the data with a classical linear model like (2).

2 Check the model assumptions on the residuals : normality,
homoscedasticity and independence.

Non-normality histogram, Q-Q plot, Shapiro-Wilk test,
Kolmogorov-Smirnov test.

Heteroscedasticity or the exclusion of a reaction variable plot the
residuals against the �tted values, and against the
di�erent variables included or not in the model.

Dependence try to detect a spatial autocorrelation of the residuals :
bubble plots, semi-variograms, Moran correlogram, test
for spatial autocorrelation of the residuals using the
Moran's I .
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Working example : Las Rosas

Spatial regression models in practice (2/2)

3 If we detect some problems on the residuals :

Non-normality the model can be misspeci�ed. Try a transformation of
your variable to be explained and/or of your explanatory
variables. It can also be the consequence of a relevant
explanatory variable forgotten in the model.

Homoscedasticity or the exclusion of a reaction variable take into
account this heteroscedasticity in your model.

Dependence check that you have not forgotten a reaction variable,
and that you are not in presence of heteroscedasticity.
If not, �t a more complicated model with an
autocorrelation structure : spatial lag model, spatial
error model or an extended linear model with a spatial
autocorrelation structure.
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Working example : Las Rosas

Example Las Rosas (1/16)

Data set from Anselin et al. 2001.

Measurements of corn yield over a controlled plot in Argentina. Regular grid
approximately 71 cm apart.

Amount of nitrogen fertilizer that is applied on each location : 6 levels
applied along the rows of the �eld.

The basic set of information consists of four variables measured at 1704
locations : YIELD, N, LATITUDE, LONGITUDE.

Xutm a SpatialPointsDataFrame object containing the yield and relevant
geographical variables to explain it (N, elev, slope, slopeX, accu, aspect
and hshade).

Objective

Do some of the explanatory variables in�uenced the observed yield variability in the
�eld ?
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Working example : Las Rosas

Example Las Rosas (2/16)

Yield

[574.2,1529]
(1529,2484]
(2484,3438]
(3438,4393]
(4393,5348]
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Working example : Las Rosas

Example Las Rosas (3/16)

Nitrogen

[0,24.92]
(24.92,49.84]
(49.84,74.76]
(74.76,99.68]
(99.68,124.6]
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Working example : Las Rosas

Example Las Rosas (4/16)

Soil aspect

[1.85,2.439]
(2.439,3.027]
(3.027,3.615]
(3.615,4.203]
(4.203,4.792]
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Working example : Las Rosas

Example Las Rosas (5/16)

Water accumulation

[−143.1,−96.59]
(−96.59,−50.04]
(−50.04,−3.495]
(−3.495,43.05]
(43.05,89.6]
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Working example : Las Rosas

Example Las Rosas (6/16)

Slope

[0.007235,0.0141]
(0.0141,0.02097]
(0.02097,0.02783]
(0.02783,0.0347]
(0.0347,0.04156]
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Working example : Las Rosas

Example Las Rosas (7/16)

Amount of radiation

[0.8509,0.8541]
(0.8541,0.8573]
(0.8573,0.8605]
(0.8605,0.8637]
(0.8637,0.8669]
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Working example : Las Rosas

Example Las Rosas (8/16)

A linear regression model model2.lm has been proposed to explained

the yield using all these explanatory variables

Yieldi = β0 + β1Ni + β2aspecti + β3accui + β4accui × slopei + β5slope
2
i

+ β6accui × hshadei + εi , (6)

εi ∼
i .i .d .
N (0, σ2).

f<-as.formula("YIELD~N+aspect+accu+I(accu*slope)+I(slope^2)

+I(accu*hshade)")

model2.lm<-lm(f,data=Xutm)

Assumptions should be checked.
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Working example : Las Rosas

Example Las Rosas (9/16)

drop1(model2.lm, . ~ ., test="F")

## Single term deletions

##

## Model:

## YIELD ~ N + aspect + accu + I(accu * slope) + I(slope^2)

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 268414987 20404

## N 1 15974896 284389884 20501 101.06 < 2.2e-16 ***

## aspect 1 60476672 328891660 20748 382.58 < 2.2e-16 ***

## accu 1 15952225 284367213 20501 100.91 < 2.2e-16 ***

## I(accu * slope) 1 38921239 307336226 20633 246.22 < 2.2e-16 ***

## I(slope^2) 1 107828744 376243732 20978 682.13 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Working example : Las Rosas

Example Las Rosas (10/16)
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Figure 1 � Diagnostic plots for model2.lm.
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Working example : Las Rosas

Example Las Rosas (11/16)

ks.test(model2.lm$res, "pnorm", mean = 0, sd = sd(model2.lm$res))

##

## One-sample Kolmogorov-Smirnov test

##

## data: model2.lm$res

## D = 0.032567, p-value = 0.05385

## alternative hypothesis: two-sided
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Working example : Las Rosas

Example Las Rosas (12/16)
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Figure 2 � Residuals of model2.lm against every possible explanatory variable.
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Working example : Las Rosas

Example Las Rosas (13/16)

Residuals of model2.lm

[−1566,−1052]
(−1052,−537.6]
(−537.6,−23.39]
(−23.39,490.9]
(490.9,1005]

Figure 3 � Bubble map for residuals of mod9.
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Working example : Las Rosas

Example Las Rosas (14/16)
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Figure 4 � Semi-variogram for the residuals of model2.lm.
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Working example : Las Rosas

Example Las Rosas (15/16)
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Figure 5 � Moran correlogram for residuals of model2.lm.
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Working example : Las Rosas

Example Las Rosas (16/16)

library(spdep)

nlist <- knn2nb(knearneigh(Xutm,k=8))

W <- nb2listw(nlist,style="W")

lm.morantest(model2.lm,W)

##

## Global Moran I for regression residuals

##

## data:

## model: lm(formula = f, data = Xutm)

## weights: W

##

## Moran I statistic standard deviate = 60.822, p-value < 2.2e-16

## alternative hypothesis: greater

## sample estimates:

## Observed Moran I Expectation Variance

## 0.7219463382 -0.0030524805 0.0001420855
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Spatial Lag Model Without explanatory variable

Spatial lag model without explanatory variables

A spatial lag model with zero mean value and no explanatory variable has
the form :

Y = ρWY + ε (7)

ε ∼ N (0, σ2I ),

where WY represents the spatial lag.

Interpretation

The value of Y at one location is directly associated with the values of the
process Y at nearby locations.
For instance high productiovity of a plant at one location is associated with
high productivity at nearby locations (but there is no notion of causality).
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Spatial Lag Model With explanatory variable

Spatial lag model with explanatory variables

A spatial lag model with explanatory variables :

Y = ρWY + Xβ + ε (8)

ε ∼ N (0, σ2I ).

Interpretation

This model can be interpreted using three points of view (Anselin 1992).

1 Speci�cation of the spatial weights matrix W and estimation of ρ are
indicators of the nature and strength of spatial interaction.

2 Y = (I − ρW )−1(Xβ + ε), and E(Y ) = (I − ρW )−1Xβ : non-linear e�ect
of the spatial autocorrelation on the expected value of Y . The in�uence of
the spatial structure is modelled through the error term and through the
explanatory variables (in�uence of the neighborhood).

Prediction Ŷ = (I − ρ̂W )−1X β̂ is mainly driven by the neighborhood. If we use

Ŷ = X β̂ , we have a bias −(ρW )−1Xβ.
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Spatial Lag Model About the variance-covariance matrix of Y

About the variance-covariance matrix of Y

var(Y ) = σ2(I − ρW )−1(I − ρW ′)−1.

Impacted by the magnitude of the variance of the error term σ2.

Impacted by the spatial structure through the term
(I − ρW )−1(I − ρW ′)−1.

Enforced by the model, we do not have to specify it. The spatial

autocorrelation structure of Y is enforced by the model.
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Spatial Lag Model Fitting the model

Fitting the model

Estimation of the parameters β, σ2 and ρ

Maximum likelihood approach.

In practice

The expressions of β̂, σ̂2 and ρ̂ that maximise the likelihood are not easy to
obtain (it would be much easier if ρ was known)
⇒ use of a numerical scheme analogous to the Newton-Raphson method :

A value of ρ̂ is �xed.

Maximum likelihood estimates β̂ and σ̂2 calculated with ρ̂ �xed.

The two preceding steps are iterated : another value of ρ̂ increasing
the likelihood is �xed, β̂ and σ̂2 are calculated to maximise the
likelihood, then �x ρ̂ again,. . .
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Spatial Lag Model Fitting the model

Spatial lag model : Las Rosas (1/3)

library(spdep)

nlist <- knn2nb(knearneigh(Xutm,k=8))

W <- nb2listw(nlist,style="W")

Xutm$YIELD_scaled <- (Xutm$YIELD-mean(Xutm$YIELD))/sd(Xutm$YIELD)

Xutm$slope_scaled <- (Xutm$slope-mean(Xutm$slope))/sd(Xutm$slope)

f <- as.formula("YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade)")

mod.lag <- lagsarlm(f,data=Xutm,listw=W)

summary(mod.lag)
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Spatial Lag Model Fitting the model

Spatial lag model : Las Rosas (2/3)

##

## Call:lagsarlm(formula = f, data = Xutm, listw = W)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2674603 -0.1146204 -0.0013436 0.1172232 0.6719409

##

## Type: lag

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.6686e-02 1.7260e-02 -2.1255 0.0335489

## N 1.5924e-03 1.1088e-04 14.3611 < 2.2e-16

## accu 1.2602e-03 1.6629e-04 7.5785 3.486e-14

## aspect -1.5240e-02 4.4662e-03 -3.4122 0.0006444

## I(accu * slope_scaled) 2.9292e-04 9.2681e-05 3.1606 0.0015747
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Spatial Lag Model Fitting the model

Spatial lag model : Las Rosas (3/3)

## Rho: 0.90687, LR test value: 2405.7, p-value: < 2.22e-16

## Asymptotic standard error: 0.011712

## z-value: 77.43, p-value: < 2.22e-16

## Wald statistic: 5995.4, p-value: < 2.22e-16

##

## Log likelihood: 327.3626 for lag model

## ML residual variance (sigma squared): 0.033407, (sigma: 0.18278)

## Number of observations: 1704

## Number of parameters estimated: 7

## AIC: -640.73, (AIC for lm: 1762.9)

## LM test for residual autocorrelation

## test value: 42.144, p-value: 8.4802e-11

Meïli Baragatti Models for Spatial Data 40/78



Spatial Error Model

Table of Contents

1 Sources and Consequences of Spatial Autocorrelation

2 Working example : Las Rosas

3 Spatial Lag Model

4 Spatial Error Model

Formulation

About the variance-covariance matrix of Y and �tting

5 Choosing Between Spatial Lag and Spatial Error models

6 Extended Linear Models

7 Bibliography

Meïli Baragatti Models for Spatial Data 40/78



Spatial Error Model Formulation

Spatial Error Model (1/2)

Y = Xβ + η (9)

η = λW η + ε

ε ∼ N (0, σ2I ).

Interpretation

1 Like a classical linear model, but with a correlated structure for the
error term.
This autocorrelation is generally considered to be a nuisance : the
primary interest is often the relationship between the explanatory
variables X and the response variable Y .
The spatial autocorrelation is just taken into account through the
error term.
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Spatial Error Model Formulation

Spatial Error Model (2/2)

2 The in�uence of the spatial structure is modelled only on the error
term Y = Xβ + (I − λW )−1ε.

Prediction Ŷ = X β̂ is driven by the values of the explanatory variables at
the location for which we want the prediction. Be careful, to have an unbiased

estimation of β, you must use the spatial error model and not the classical linear model

if your data are driven by this spatial error model.

This model can be written as a classical linear model :

Y − λWY = Xβ − λWY + η

= (X − λWX )β + ε

Ỹ = X̃β + ε
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Spatial Error Model About the variance-covariance matrix of Y and �tting

About the variance-covariance matrix of Y and �tting

var(Y ) = σ2(I − λW )−1(I − λW ′)−1. (10)

Impacted by the magnitude of the variance of the error term σ2.

Impacted by the spatial structure through the term
(I − λW )−1(I − λW ′)−1.

Enforced by the model, we do not have to specify it. The spatial

autocorrelation structure of Y is enforced by the model.

Fitting the model

The approach is the same as for the spatial lag model, with ρ replaced by λ.
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Spatial Error Model About the variance-covariance matrix of Y and �tting

Spatial error model : Las Rosas (1/2)

mod.err <- errorsarlm(f,data=Xutm,listw=W)

summary(mod.err)

##

## Call:errorsarlm(formula = f, data = Xutm, listw = W)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2112753 -0.1053701 0.0024866 0.1097140 0.6707100

##

## Type: error

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.48112487 0.16667563 2.8866 0.003894

## N 0.00195918 0.00011087 17.6711 < 2.2e-16

## accu 0.01252811 0.00080061 15.6483 < 2.2e-16

## aspect -0.14706321 0.04800230 -3.0637 0.002186

## I(accu * slope_scaled) 0.00198320 0.00077652 2.5540 0.010651
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Spatial Error Model About the variance-covariance matrix of Y and �tting

Spatial error model : Las Rosas (2/2)

## Lambda: 0.92271, LR test value: 2482.1, p-value: < 2.22e-16

## Asymptotic standard error: 0.011007

## z-value: 83.826, p-value: < 2.22e-16

## Wald statistic: 7026.9, p-value: < 2.22e-16

##

## Log likelihood: 365.5709 for error model

## ML residual variance (sigma squared): 0.031578, (sigma: 0.1777)

## Number of observations: 1704

## Number of parameters estimated: 7

## AIC: -717.14, (AIC for lm: 1762.9)
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Choosing Between Spatial Lag and Spatial Error models
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Choosing Between Spatial Lag and Spatial Error models

Choosing Between Spatial Lag and Spatial Error models
(1/2)

Spatial autocorrelation detected in residuals of a classical linear model
⇒ take into account this autocorrelation
⇒ choose between spatial lag model and spatial error model (or an
extended linear model).

These two models can be combined in a single model of the form :

Y = ρW1Y + Xβ + η (11)

η = λW2η + ε

ε ∼ N (0, σ2I ),

where W1 cannot be equal to W2 or X cannot simply be a vector of ones
(for identi�ability).
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Choosing Between Spatial Lag and Spatial Error models

Choosing Between Spatial Lag and Spatial Error models
(2/2)

The problem with choosing between the two models can be expressed as two
hypothesis tests :

1st test :

{
H0 : ρ = 0,
H1 : ρ 6= 0

and 2nd test :

{
H0 : λ = 0,
H1 : λ 6= 0

H0 kept for both tests ⇒ keep a classical linear model, there is no spatial
autocorrelation of the residuals.

H0 kept for the �rst test and H1 non-rejected for the second test ⇒ spatial
error model.

H0 kept for the second test and H1 non-rejected for the �rst test ⇒ spatial
lag model.

In practice :

These tests are carried using the Lagrange multiplier test.

Another possibility : use the AIC criteria.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (1/16)

model2.lm_scaled <- lm(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm)

lm.LMtests(model2.lm_scaled,W,test=c("LMlag","LMerr","SARMA"))

##

## Lagrange multiplier diagnostics for spatial dependence

##

## data:

## model: lm(formula = YIELD_scaled ~ N + accu + aspect + I(accu *

## slope_scaled) + I(slope_scaled^2) + I(accu * hshade), data = Xutm)

## weights: W

##

## LMlag = 3696.2, df = 1, p-value < 2.2e-16
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (2/16)

##

## Lagrange multiplier diagnostics for spatial dependence

##

## data:

## model: lm(formula = YIELD_scaled ~ N + accu + aspect + I(accu *

## slope_scaled) + I(slope_scaled^2) + I(accu * hshade), data = Xutm)

## weights: W

##

## LMerr = 3893.5, df = 1, p-value < 2.2e-16

##

##

## Lagrange multiplier diagnostics for spatial dependence

##

## data:

## model: lm(formula = YIELD_scaled ~ N + accu + aspect + I(accu *

## slope_scaled) + I(slope_scaled^2) + I(accu * hshade), data = Xutm)

## weights: W

##

## SARMA = 3898.9, df = 2, p-value < 2.2e-16
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (3/16)

AIC ⇒ we prefer the spatial error model.

The yield at one location is mainly driven by the values of the explanatory
variables at this location.

If we assume interaction (competition) between corn plants, we should
prefer the spatial lag model.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (4/16)

Improve the spatial error model by performing model selection.

Try to remove explanatory variables or interactions between them and
to include variables which are not present in mod.err.

AIC criteria to select the best model.

We remove the interaction accu*slope_scaled, and we include the
variable elev which has been scaled.

Xutm$elev_scaled <- (Xutm$elev-mean(Xutm$elev))/sd(Xutm$elev)

f <- as.formula("YIELD_scaled ~ N + accu + aspect +I(slope_scaled^2)+

I(accu*hshade)+elev_scaled")

mod.err8 <- errorsarlm(f,data=Xutm,listw=W)

summary(mod.err8)
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (5/16)

##

## Call:errorsarlm(formula = f, data = Xutm, listw = W)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2008215 -0.1072744 0.0035153 0.1118625 0.6940611

##

## Type: error

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.6597909 0.1517124 4.3490 1.368e-05

## N 0.0019562 0.0001116 17.5294 < 2.2e-16

## accu 0.5553112 0.1388971 3.9980 6.388e-05

## aspect -0.1716027 0.0409821 -4.1873 2.823e-05

## I(slope_scaled^2) -0.1272388 0.0357075 -3.5634 0.0003661

## I(accu * hshade) -0.6360292 0.1619698 -3.9268 8.607e-05

## elev_scaled -0.3653518 0.1443791 -2.5305 0.0113899
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (6/16)

##

## Lambda: 0.90054, LR test value: 1976, p-value: < 2.22e-16

## Asymptotic standard error: 0.012869

## z-value: 69.977, p-value: < 2.22e-16

## Wald statistic: 4896.8, p-value: < 2.22e-16

##

## Log likelihood: 373.6497 for error model

## ML residual variance (sigma squared): 0.031777, (sigma: 0.17826)

## Number of observations: 1704

## Number of parameters estimated: 9

## AIC: -729.3, (AIC for lm: 1244.7)
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (7/16)

We check that the assumptions are veri�ed on the residuals of mod.err8.

ks.test(mod.err8$residuals,"pnorm", mean=0, sd=sd(mod.err8$residuals))

##

## One-sample Kolmogorov-Smirnov test

##

## data: mod.err8$residuals

## D = 0.029614, p-value = 0.1007

## alternative hypothesis: two-sided
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (8/16)
Histogram of mod.err8$residuals
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Figure 6 � Histogram of residuals of mod.err8.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (9/16)
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Figure 7 � Residuals of mod.err8 against every possible explanatory variable.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (10/16)

Residuals of mod.err
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(0.3151,0.6941]

Figure 8 � Bubble map for residuals of mod.err8.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (11/16)
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Figure 9 � Semi-variogram for the residuals of mod.err8.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (12/16)
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Figure 10 � Moran correlogram for residuals of mod.err8.
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (13/16)

moran.mc(Xutm@data$res.err8,W,nsim=1000,alternative="greater")

##

## Monte-Carlo simulation of Moran I

##

## data: Xutm@data$res.err8

## weights: W

## number of simulations + 1: 1001

##

## statistic = -0.065154, observed rank = 1, p-value = 0.999

## alternative hypothesis: greater
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (14/16)

pred <- as.data.frame(predict.sarlm(mod.err8))

head(pred)

## fit trend signal

## 1 0.9903291 0.8177455 0.1725836

## 2 0.9004259 0.7922841 0.1081418

## 3 0.8699619 0.7556189 0.1143431

## 4 0.9720662 0.7043677 0.2676985

## 5 1.0043946 0.6304516 0.3739430

## 6 0.9097421 0.5436834 0.3660587
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (15/16)

Xutm2 <- Xutm

Xutm2@data$N <- Xutm@data$N + 1

newpred <- as.data.frame(predict.sarlm(mod.err8, newdata=Xutm2, listw = W))

head(newpred)

## fit trend signal

## 1 0.8197017 0.8197017 0

## 2 0.7942404 0.7942404 0

## 3 0.7575751 0.7575751 0

## 4 0.7063240 0.7063240 0

## 5 0.6324078 0.6324078 0

## 6 0.5456396 0.5456396 0

diff <- newpred$fit-pred$fit

Xutm@data$diff <- diff

spplot(Xutm, "diff", col.regions=brewer.pal(9,"Oranges"),

cex=.2*(1:5), aspect=1/2, main="Predicted differences of yield")
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Choosing Between Spatial Lag and Spatial Error models

Example Las Rosas (16/16)

Predicted differences of yield

[−0.5252,−0.2446]
(−0.2446,0.03591]
(0.03591,0.3165]
(0.3165,0.597]
(0.597,0.8775]

Figure 11 � Bubble map for the predicted di�erences of yield when N is increased
by one unit.Meïli Baragatti Models for Spatial Data 63/78



Extended Linear Models
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Extended Linear Models Classical Linear Model versus Extended Linear Model

Classical linear model versus extended linear model (1/2)

Y quantitative variable to explain, explanatory variables quantitative or
qualitative :

Y = Xβ + ε with ε ∼ N (0, σ2I ). (12)

Possible extensions

On the variance-covariance matrix of the residuals (among others).

In classical linear models :

The residuals (therefore the observations) are supposed independent.

The residuals are supposed homoscedastic.
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Extended Linear Models Classical Linear Model versus Extended Linear Model

Classical linear model versus extended linear model (2/2)

Y = Xβ + ε with ε ∼ N (0,Λ). (13)

1 If Λ is diagonal, but with varying coe�cients on the diagonal, ⇒
heteroscedasticity.

2 If Λ has non-null coe�cients outside the diagonal ⇒ correlation
between the residuals, dependence structure of the residuals. This
dependence can be temporal, spatial or more general.

In practice, once a modelisation has been chosen

Parameters of these extended linear models (regression coe�cients
and coe�cients of the variance-covariance matrix) estimated using the
maximum likelihood estimators.

Numerically obtained by solving an ordinary least-squares problem.
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Extended Linear Models Modelling Spatial Correlation

Modelling Spatial Correlation

Extended linear model vs regression models for spatially

autocorrelated data

Models for spatially autocorrelated data : special cases of extended
linear models.

In extended linear models Λ can take any form.

In the regression models designed for spatially autocorrelated data, the
form of Λ is enforced by the model.

Regression models for spatially autocorrelated data often more
intuitive than extended linear models.
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Extended Linear Models Modelling Spatial Correlation

Choosing the modelisation of the spatial dependency (1/2)

Look at the form of the semi-variogram

Choosing the form of the variance-covariance matrix Λ ⇔ to choose a
semi-variogram pattern.

The form of the empirical semi-variogram can guide us to choose a
semi-variogram pattern.

Model Formula (ρ the range)

Exponential γ(d , ρ) = 1− exp(−d/ρ)
Gaussian γ(d , ρ) = 1− exp

[
− (d/ρ)2

]
Linear γ(d , ρ) = 1− (1− d/ρ)1(d < ρ)
Rational quadratic γ(d , ρ) = (d/ρ)2/

[
1 + (d/ρ)2

]
Spherical γ(d , ρ) = 1−

[
1− 1.5(d/ρ) + 0.5(d/ρ)3

]
1(d < ρ)

Table 1 � Some isotropic semi-variogram models for spatial correlation structures.

Use classical model selection methods

AIC, BIC, tests between nested models.
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Extended Linear Models Modelling Spatial Correlation

Choosing the modelisation of the spatial dependency (2/2)
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Figure 12 � Di�erent semi-variogram patterns : Spherical, Exponential, Rational
quadratic, Linear and Gaussian. Each pattern has a nugget of 0.1. The value of
the range is 0.5, 0.7 or 0.9.Meïli Baragatti Models for Spatial Data 68/78



Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (1/7)

library(nlme)

model2.lm <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm)

modSpher <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm,

correlation=corSpher(form=~x+y,nugget=T))

modLin <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm,

correlation=corLin(form=~x+y,nugget=T))

modRatio <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm,

correlation=corRatio(form=~x+y,nugget=T))

modGaus <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm,

correlation=corGaus(form=~x+y,nugget=T))

modExp <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)

+I(slope_scaled^2)+I(accu*hshade), data=Xutm,

correlation=corExp(form=~x+y,nugget=T))
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (2/7)

AIC(modSpher,modLin,modRatio,modGaus,modExp)

## df AIC

## modSpher 10 -837.3943

## modLin 10 -830.0858

## modRatio 10 -783.4707

## modGaus 10 -761.8102

## modExp 10 -832.0582

anova(model2.lm,modSpher)

## Model df AIC BIC logLik Test L.Ratio p-value

## model2.lm 1 8 1463.0420 1506.5349 -723.5210

## modSpher 2 10 -837.3943 -783.0281 428.6972 1 vs 2 2304.436 <.0001

VarioSpher_raw <- Variogram(modSpher, form =~ LONGITUDE + LATITUDE,

robust = TRUE, maxDist = 350, resType = "pearson")

VarioSpher_normalized <- Variogram(modSpher, form =~ LONGITUDE + LATITUDE,

robust = TRUE, maxDist = 350, resType = "normalized")
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (3/7)
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Figure 13 � Semi-variogram for the raw residuals of modSpher.
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (4/7)
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Figure 14 � Semi-variogram for the studentized residuals of modSpher.
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas(5/7)

Normalized residuals of modSpher
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Figure 15 � Bubble map for residuals of modSpher.
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (6/7)

moran.mc(Xutm@data$resSpherNorm,W,nsim=1000,alternative="greater")

##

## Monte-Carlo simulation of Moran I

##

## data: Xutm@data$resSpherNorm

## weights: W

## number of simulations + 1: 1001

##

## statistic = -0.026172, observed rank = 14, p-value = 0.986

## alternative hypothesis: greater
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (7/7)

ks.test(Xutm@data$resSpherNorm,"pnorm", mean=0, sd=sd(Xutm@data$resSpherNorm))

##

## One-sample Kolmogorov-Smirnov test

##

## data: Xutm@data$resSpherNorm

## D = 0.03055, p-value = 0.08311

## alternative hypothesis: two-sided
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas (8/7)
Studentized residuals of modSpher

Xutm@data$resSpherNorm
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Figure 16 � Histogram of residuals of modSpher.

Predictions are possible from extended linear model using the function
predict or predict.gls from the package nlme.
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Extended Linear Models Modelling Spatial Correlation

Remark

In practice

Easier to use a regression model designed for spatially autocorrelated
data, and often more intuitive.

If one of these two models does not give a satisfactory result, you can
try an extended linear model ⇒ choose the form of Λ yourself, using
the form of the semi-variogram or criteria like AIC.
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