
An introduction to geographic data with R
raster and vector data sets

Manuel Campagnolo

Instituto Superior de Agronomia, Universidade de Lisboa

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 1 / 76

1 Introduction

2 Raster data sets

3 Some brief notes on coordinate reference systems

4 Vector data sets

5 Geographic data analysis with package rgeos

6 Overview

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 2 / 76

Processing geographic data with R
To do spatial analysis on geographic data, we first need to be able to:

1 read raster and vector data sets, e.g. geotiff, shapefile, or other
file formats;

2 associate a coordinate reference system (CRS) to a data set and
reproject it to a new CRS if necessary;

3 manipulate and explore data structures for geographic data in R;
4 if necessary, export the results as new geographic data sets.

Some useful web site links:
1 The Comprehensive R Archive Network’s task view “Analysis of

Spatial Data”, by Roger Bivand
2 Edzer Pebesma and Roger Bivand, Classes and methods for

spatial data in R, R news, 5/2 (2005) 9–14
3 Robert J. Hijmans, Introduction to the raster package, 2014

Reference:
1 Roger S. Bivand, Edzer Pebesma, Virgilio Gomez-Rubio, 2013.

Applied spatial data analysis with R, 2nd edition. Springer, NY.
www.asdar-book.org/

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 3 / 76

http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/doc/Rnews/Rnews_2005-2.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2005-2.pdf
http://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf
http://www.asdar-book.org/

R packages for geographic data

The following site updates regularly the many available packages for
geographic and spatial processing:

The Comprehensive R Archive Network’s task view “Analysis
of Spatial Data”, by Roger Bivand.

The major packages we rely on are sp, raster, rdal and rgeos.
These are necessary to read and write different file formats, convert
them into R objects, and manipulate data structures for geographic
data in R.

1 l i b r a r y (r a s t e r) # r a s t e r data sets
2 l i b r a r y (sp) # vec to r data sets
3 l i b r a r y (rgda l) # impor t / expor t data sets
4 l i b r a r y (rgeos) # s p a t i a l ana l ys i s o f geographic data sets

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 4 / 76

http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/views/Spatial.html

Geographic data sets

Geographic data sets encompass:
geographic location, defined over some coordinate reference
system (CRS), which can be geographic (latitude/longitude) or
cartographic (x , y coordinates on a plane);
values associated to each location which can be continuous or
categorical;
an appropriate data format:

I raster data sets tend to be used to represent variables which value
is known over a continuous extension of space, like surface
reflectance or temperature;

I vector data sets tend to be used to represent features at selected
locations.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 5 / 76

Raster data sets

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 6 / 76

Read raster data sets

Package raster provides many classes and functions for raster data
sets. Class RasterLayer supports single band images, and classes
RasterBrick and RasterStack support multi band images, where
each band has the same extension and spatial resolution.
RasterStack is more flexible, and RasterBrick is more efficient.

In this example, we use function stack to read satellite Landsat 7
images over a 30 × 30 km2 area in Ribatejo, an intensive agricultural
region of Portugal. Each band is available as a distinct GeoTIFF file,
so it needs to be first grouped as a RasterStack object, and then it
can be converted into a RasterBrick for further processing in R.

1 f i c h s <− l i s t . f i l e s (pa t t e rn =" band[1−7] ") # l i s t o f f i l e names
2 s <− stack (as . l i s t (f i c h s)) # read r a s t e r data sets
3 s # data set summary
4 b <− b r i c k (s) # create RasterBr ick ob jec t
5 b # idem
6 n layers (b) # number o f l aye r i n the RasterBr ick ob jec t

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 7 / 76

Access pixel values with values

Function values returns either values of a RasterLayer (single
band) as a vector or values of a RasterBrick (multiple bands) as a
matrix object. In this last case, each row represents one pixel, and
each column represents a band. “No data” values are represented by
NA.

In the following example, one plots the histograms for all bands. To plot
each histogram one can either use hist(b[[i]]) or
hist(values(b)[,i]) since both represent all values in the i th
band.

However, to determine the range of values for all bands one has to do
range(values(b)) since range(b) return a new RasterBrick
object with the minimum and maximum values for each pixel.

1 par (mfrow=c (3 ,2) ,mar=c (4 ,4 ,2 ,2)) ;
2 f o r (i i n 1 : n layers (b))
3 h i s t (b [[i]] , x l im=range (values (b) , na . rm=TRUE) , breaks=seq (0 ,1 ,

leng th . out =20) , x lab=" r e f l e c t a n c e ")

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 8 / 76

Color composite with plotRGB

1 box <−ex ten t (c (500000 , 520000 , 4310000 , 4330000))

Function plotRGB
defines color composites
of multilayer images.
Here, we define a
RGB=432 composite.

1 par (mfrow=c (1 ,1) ,mar=
rep (0 ,4))

2 plotRGB (b , r =4 ,g=3 ,b=2 ,
s t r e t c h =" l i n " , ex t=
box)

The option
stretch="lin"
enhances constrast.

The plot’s extent is
defined by argument ext.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 9 / 76

Raster algebra and manipulation of raster values
The Normalized Difference Vegetation Index (NDVI) can be computed
with arithmetic operations over the multilayer Landsat image:

1 ndv i <− (b$band4 − b$band3) / (b$band4 + b$band3)

Many R operations for matrices can be applied to raster layers. In this
example, one computes the proportion of NA values in ndvi:

1 n c e l l (ndv i [i s . na (ndv i)]) / n c e l l (ndv i) # leng th could be used
ins tead of n c e l l

The values of the pixel can be modified as in the following example:

1 ndv i [ndvi <0] <− 0 # rep lace negat ive ndv i values by 0

Applying a function to a RasterBrick or RasterStack returns a
new raster object:

1 min (b , na . rm=TRUE) # RasterLayer w i th the minimum value at each
p i x e l

2 range (crop (b , box) , na . rm=TRUE) # re tu rns RasterBr ick w i th two
laye rs

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 10 / 76

Raster manipulations

The function cellStats returns statistics for each layer of a
RasterBrick or RasterStack object:

1 c e l l S t a t s (b , "mean") # re tu rns a vec to r o f leng th 6 , w i th the
averages f o r each band :

Functions calc and overlay can also be used to apply some
function to a multilayer image: fun has to match the layers of the
RasterBrick or RasterStack inputs.

1 median (crop (b , box)) # e r r o r
2 b . median<−over lay (crop (b , box) , fun=median) # i t works , but i t i s

slow . . .

To obtain the coordinates as a 2-column matrix, and add a 3rd column
with the pixel values:

1 xyz<−cbind (coord ina tes (ndv i) , values (ndv i))

Exercise: what is the location with the highest NDVI value?

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 11 / 76

Access very high resolution imagery through R

Several functions are available to download very high resolution
imagery:

GetMap from package RgoogleMaps; only to create a
background image;
gmap from package dismo; this function returns a raster object,
either a RasterLayer or a RasterBrick that can be processed
in R.

Example:

1 l i b r a r y (RgoogleMaps)
2 TA <− GetMap (center= " Tapada da Ajuda " , zoom=13 , maptype="

s a t e l l i t e ") #read d s a t e l l i t e image
3 par (mfrow=c (1 ,1) ,mar=c (1 ,1 ,1 ,1))
4 PlotOnStat icMap (TA) # p l o t
5 bb <− TA$BBOX # extens ion (l a t / long)
6 l a t<−(bb$ l l [1] + bb$ur [1]) / 2 ; long<−(bb$ l l [2] + bb$ur [2]) / 2
7 t e x t (long , l a t , "Welcome to ISA " , cex=4 , co l= " ye l low ") # add t e x t

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 12 / 76

Interactive tools in R
In the following example, we use function gmap from package dismo
to access very high resolution (VHR) imagery. Then, we superimpose
the high resolution imagery with the earlier Landsat 7 color composite.

The first thing is to determine the location of the VHR image we want
to download. This can be done selecting a location with locator:

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t=box)
2 xy<− l o c a t o r (n=1) # to s e l e c t n po in t s over the cu r ren t p l o t

Alternatively, one can use drawExtent() to determine an extent
object:

1 e<−drawExtent () # drawExtent re tu rns an ex ten t ob jec t

The other possibility is to define the point or the extension explicitly:

1 e<−ex ten t (c (513614 ,514211 ,4317780 ,4318205))
2 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t=e)

Those coordinates are in the coordinate reference system of b.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 13 / 76

Coordinate reference system (CRS)
Check that b has CRS UTM, zone 29:

1 b@crs # or crs (b)

The string

"+proj=utm +zone=29 +datum=WGS84 +units=m
+no_defs +ellps=WGS84 +towgs84=0,0,0"

is called a proj.4 string and describes the CRS: the projection is
universal transverse mercator at zone 29, and the reference datum is
WGS84. The coordinate units are meters. Finally, +ellps indicates
the ellipsoid, and +towgs84 contains parameters for datum
transformation.

This CRS can also be referred to by its epsg code:

1 utm.29<−"+ i n i t =epsg :32629 " # s t r i n g t h a t can be i n t e r p r e t e d as
a CRS

CRS can be searched at https://epsg-registry.org/ or at
http://spatialreference.org/.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 14 / 76

https://epsg-registry.org/
http://spatialreference.org/

Coordinate reference system (CRS)

The difficulty here is that we need to know the latitude and longitude of
the location where we want to obtain a VHR image. Towards that end,
we need to convert our UTM, zone 29, coordinates into latitude and
longitude.

This can de done by reprojecting the Landsat image to a geographic
(i.e. lat/long) CRS:

1 cb<−crop (b , e) # crops b to the ex ten t def ined by e
2 wgs84<−"+ p r o j = l o n g l a t + e l l p s =WGS84 +datum=WGS84" # de f ine new

l a t / long CRS
3 b . wgs<−pro jec tRas te r (cb , c rs=CRS(wgs84)) # re tu rns r a s t e r w i th

values and l a t / long coord ina tes
4 # or
5 b . wgs<−p r o j e c t E x t e n t (cb , crs=CRS(wgs84)) # re tu rns r a s t e r w i th

no values and l a t / long coord ina tes
6 e . wgs<−ex ten t (b . wgs) # or b . wgs@extent

As a result, e.wgs are the coordinates (in lat/long) of the extent e
originally in UTM, zone 29.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 15 / 76

Download very high resolution imagery with gmap

Now that we know the extent (in latitude/longitude) for the VHR image
we want to download, we can use gmap from package dismo. The
option scale=2 is to download a raster with the highest possible
resolution. Note that the resolution of the image returned by gmap also
depends on the extent: for a smaller extent the resolution is better.

1 l i b r a r y (dismo)
2 gm. wgs<−gmap(e . wgs , type=" s a t e l l i t e " , l o n l a t =TRUE, rgb=TRUE, scale

=2)

Finally, we convert gm.wgs back to UTM, zone 29, so it can be
superimposed over the Landsat original image:

1 gm. utm<−pro jec tRas te r (gm. wgs , crs=utm .29)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 16 / 76

Superimpose two images

1 par (mfrow=c (1 ,1))
2 # VHR image
3 plotRGB (gm. utm , r =3 ,g

=2 ,b=1)
4 # Landsat RGB=432

composite
5 plotRGB (b , r =4 ,g=3 ,b=2 ,

s t r e t c h =" l i n " , ex t=
e , alpha =100 ,add=
TRUE)

The alpha argument
controls transparency: it
ranges from 0 to 255.

Exercise: execute the above commands but replace ext=e by
ext=2*e. Recall that e is an object of class extent that was used to
define the extension of the downloaded VHR image.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 17 / 76

Some brief notes on coordinate reference
systems

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 18 / 76

A few notions on coordinate reference systems and projections

There are three basic
systems of coordinates used
in geography:

1 3D Cartesian
coordinates: used for
geodesy;

2 Geographic coordinates
(lat/long): reference
coordinates to store
information; these are
the coordinates
gathered by GPS
devices;

3 Cartographic planar
coordinates (x , y).

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 19 / 76

Map projections

A map projection is a method to produce all or part of a spheroid
(ellipsoid of revolution) on a flat surface.

Even if map projections
are not in general
perfect geometric
projections, it is
convenient to classify
them according to the
most similar geometric
projection, which can
be:

azimuthal,
conic,
cylindrical

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 20 / 76

Decrypting PROJ.4 descriptions
Consider the following proj.4 description of a CRS:
+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000
+y_0=3210000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs

The parameters of the CRS are:

1 +proj=laea: Lambert azimuthal equal-area map projection;
2 +lat_0=52 +lon_0=10: geographic coordinates of the origin of

the projection;
3 +x_0=4321000 +y_0=3210000: false easting and false

northing, i.e. distances (m) from the origin (x=0,y=0) of the
cartographic coordinates to the origin of the projection;

4 +ellps=GRS80: ellipsoid name;
5 +towgs84=0,0,0,0,0,0,0 : datum transformation parameters

to WGS84;
6 +units=m: units of projection coordinates

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 21 / 76

Some other CRS examples

Datum Projection Shift x,y Cartographic
coord. [epsg]

WGS84
epsg: 4326

+lat_0=39.66 +lon_0=-8.133

ETRS89
TM PT06
[3763]

ETRS89
LCC [3034]

+proj=tmerc +x_0=0 +y_0=0

+proj=lcc

+lat_0=52+lon_0=10

+x_0=4000000
+y_0=2800000

ETRS89
LAEA [3035]

+proj=laea

+lat_0=52+lon_0=10

+x_0=4321000
+y_0=3210000

+proj=tmerc
+lat_0=0+lon_0=-9

+x_0=500000
+y_0=0

UTM zone
29N [32629]

A few CRS that are used in modern cartography for the EU and for
Portugal in particular (ETRS89-TM-PT06). LCC stands for Lambert
conformal conic, and LAEA stands for Lambert azimuthal equal-area.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 22 / 76

Some other CRS examples (cont’)

The CRS in the previous slide have the following proj.4 descriptions:
epsg:3763 +proj=tmerc +lat_0=39.66825833333333

+lon_0=-8.133108333333334
+k=1 +x_0=0 +y_0=0
+ellps=GRS80 +units=m +no_defs

epsg:3034 +proj=lcc +lat_1=35 +lat_2=65
+x_0=4000000 +y_0=2800000
+ellps=GRS80 +units=m +no_defs;

epsg:3035 +proj=laea +lat_0=52 +lon_0=10
+x_0=4321000 +y_0=3210000
+ellps=GRS80 +units=m +no_defs;

epsg:32629 +proj=utm +zone=29 +ellps=WGS84
+datum=WGS84 +units=m +no_defs.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 23 / 76

Vector data sets

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 24 / 76

Features and attributes
A geographic feature is a digital representation of a real world
phenomenon. A feature class is a set of features with a common
structure and theme. In general, feature classes include

georeferenced geometric objects + attributes.

Source: http://gisatbrown.typepad.com/gis/files/spatialdatafiles.pdf

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 25 / 76

Standards for analysis of georeferenced geometric objects

The OGC OpenGIS Implementation Standard for Geographic
Information / ISO 19125 defines:
Geometric objects which can be of type point, line, polygon,

multi-point, etc, and are associated to a given Coordinate
Reference System;

Methods on geometric objects return properties like dimension,
boundary, area, centroid, etc;

Methods for testing spatial relations between geometric objects
equals, disjoint, intersects, touches, crosses, within,
contains, overlaps and relate, which returns TRUE or
FALSE (see Slide 50);

Methods that support spatial analysis distance, which returns a
distance, and buffer, convex hull, intersection, union,
difference, and symmetric difference, which returns new
geometric objects (see Slide 59).

Source: www.opengeospatial.org/standards/sfa

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 26 / 76

Geometric objects
A geometric object is a spatial object representing locations with
respect to a given CRS. A collection of geometric objects is called a
geometry. Therefore, a feature class is spatially represented by a
geometry.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 27 / 76

Geometric objects (cont’)

The basic and composed geometry types are described by their
coordinates in the CRS: represented below are geometric objects of
dimension 0 (points), 1 (linestrings), and 2 (polygons). A geometry
collection can contain objects of of different dimensions.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 28 / 76

Some basic properties of geometric objects: dimension, interior,
boundary, exterior
Points and Multipoints have dimension 0,
Curves like LineStrings and MultiLineStings have dimension 1,
Surfaces like Polygons and MultiPolygons have dimension 2.

Geometric objects have an Interior, a Boundary and an Exterior:
1 If p is a point, then I(p) = p, B(p) is empty, and the exterior E(p)

are all the points not in p;
2 If L is a curve, then B(L) are the ends of the curve, I(L) are all the

points of the curve except the ends, and the exterior E(L) are the
remaining points;

3 If P is a surface, B(P) is the boundary, I(S) is the set of points of P
which are not on the boundary and E(P) are the remaining points.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 29 / 76

singlepart and multipart geometric objects
A geometric object can be either singlepart or multipart.

1 point : one single feature can be represented as
I a single point (singlepart);
I more than one point (multipart).

2 curve : one single feature can be represented as
I one single linestring (singlepart); or
I a set of linestrings (multipart).

3 surface : each feature may have or not holes. Each feature is
represented by:

I one single polygon (singlepart) with no holes in its interior;
I one single polygon with one or more holes in its interior (singlepart);
I more than one polygon with or without holes in their interiors

(multipart).

Each hole is also represented by a polygon. A singlepart surface,
with or without holes, is always spatially connected, i.e. any two
points in its interior can be connected. Hence, any non-connected
feature must be represented by a multipart surface.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 30 / 76

singlepart e multipart geometric objects: examples
The following geometric objects represent protected areas in Portugal
(ICNF, 2014):

singlepart geometric
object with one part
and no holes

singlepart geometric
object with one part
and 5 holes. Note
that it is spatially
connected.

multipart object repre-
sented by several poly-
gons, which is not spa-
tially connected.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 31 / 76

Feature classes in R: the package sp

The sp package (Pebesma and Bivand, 2005) provides classes and
methods for dealing with spatial data in R. The spatial data structures
implemented include points, lines, polygons, and grids; each of them
with or without attribute data. This package offers a uniform interface
for handling spatial data and makes R more coherent for analyzing
different types of spatial data.

Some data classes in sp:

type class attributes contains
points SpatialPoints Spatial*

SpatialPointsDataFrame data.frame SpatialPoints*
line Line
lines Lines Line list

SpatialLines Spatial*, Lines list
SpatialLinesDataFrame data.frame SpatialLines*

rings Polygon Line *
Polygons Polygon list
SpatialPolygons Spatial*, Polygons list
SpatialPolygonsDataFrame data.frame SpatialPolygons

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 32 / 76

Data structure for sp classes
Slots @bbox (extension) and @proj4string are common to all classes.
Particular classes have their own slots like @data for attributes, and
@lines or @polygons, which are lists of geometric objects.

For instance, for SpatialPolygons, each element of list @polygons
represents a feature; each element of list @Polygons represents a
part (or a hole) of a feature.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 33 / 76

Read a polygon feature class
The following data set in shapefile format contains agriculture
parcels in Ribatejo, not far from Lisbon:

1 parce ls<−readOGR(dsn=getwd () , l a ye r = " parcels3763 ")
2 parce ls # summary
3 head (parce ls) # f i r s t rows of a t t r i b u t e tab le
4 l eng th (parce ls) # number o f fea tu res

One can see that parcels has 7687 features and it is a
SpatialPolygonsDataFrame. Hence, parcels has an attribute
table with 7687 rows: each row contains the attribute values of the
corresponding feature.

To access the attribute table, one uses the @data slot of the object:

1 slotNames (parce ls) # d i sp lays " data " " polygons " " p lo tOrder "
" bbox " " p r o j 4 s t r i n g "

2 head (parcels@data)

The coordinate reference system is returned by:

1 parce ls@pro j4s t r ing # ob jec t o f c lass "CRS"

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 34 / 76

Reproject vector data set
Reproject parcels to match Landsat color composite (b):

1 parce ls . utm<−spTransform (parcels , CRSobj=b@crs)

1 par (mfrow=c (1 ,1) ,mar=rep (0 ,4))
2 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h ="

l i n ")
3 p l o t (parce ls . utm , co l=c (" green " ,

" orange " , " ye l low ") [
parce ls . utm$CODSUBSIDY] , add
=TRUE)

4 # add legend
5 legend (x=parce ls . utm@bbox [" x " , "

min "] , y=parce ls . utm@bbox [" y
" , "max"] , legend= l e v e l s (
parce ls . utm$CODSUBSIDY) ,
f i l l =c (" green " , " orange " , "
ye l low "))

c("green", "orange", "yellow")[parcels.utm$CODSUBSIDY]

provides the colors for the 7687 features.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 35 / 76

Join attribute tables in R

The attribute table of parcels.utm is missing the crop names. This
can be fixed by performing a join with a new table that has crops’
codes and names.

Firstly, we read the new table as a data.frame:

1 crops<−read . t ab l e (" crop−codes−and−names . t x t " , sep=" ; " , header=
TRUE)

2 head (crops)

code name
1 88 not cultivated
2 143 permanent grazeland
3 24 rice
4 142 meadow
5 1 wheat
6 89 fallow land
...

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 36 / 76

Join attribute tables in R (cont’)
This new data.frame has a column code that matches the attribute
CODCROP from the attribute table of parcels.utm. Both tables can be
joined using the R base function merge for data.frame:

1 newdf<−merge (x=parce ls . utm@data , y=crops , by . x="CODCROP" , by . y="
code " , a l l . x=TRUE)

However, package sp provides an alternative merge function, where
the first argument is a sp object, and returns a
SpatialPolygonsDataFrame with additional attributes from crops:

1 parce ls . merge<−merge (x=parce ls . utm , y=crops , by . x="CODCROP" , by . y=
" code " , a l l . x=TRUE)

2 head (parce ls . merge [, −2])

CODCROP NPARCEL NSUBPARCEL CODSUBSIDY name
2925 88 301 00 OTH not cultivated
2926 88 401 02 OTH not cultivated

If all.x=FALSE only features that match a code value in crops are
preserved.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 37 / 76

Select features based on attribute values

To select character strings, one can use regular expressions with grep
or grepl.

Select a subset of features using attributes:

1 parce ls . merge@data [grep (x=parce ls . merge$name, pa t t e rn =" t ab l e ") ,]
se lec t s s t r i n g s con ta in ing ’ tab le ’ ; r e tu rns data . frame

2 parce ls . merge [grep (x=parce ls . merge$name, pa t t e rn =" t ab l e ") ,] #
re tu rns SpatialPolygonsDataFrame

3 parce ls . merge [grep (x=parce ls . merge$name, pa t t e rn =" ^ t ab l e ") ,] #
se lec t s s t r i n g s t h a t s t a r t by ’ tab le ’ and re tu rns SPDF

Create map for one single crop:

1 sunf lower<−parce ls . merge [grep (x
=parce ls . merge$name, pa t t e rn
=" sunf lower ") ,]

2 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h ="
l i n " , ex t=sunflower@bbox)

3 p l o t (sunf lower , add=TRUE, co l= "
ye l low ")

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 38 / 76

Create a sp object from scratch
Let’s define some monitoring plots over our study area. You can define
your own coordinates with locator() clicking over the image, or you
can use the following coordinates for three polygons:

1 pol1<−cbind (c (511113 ,511103 ,510498 ,510463) ,
2 c(4311271 ,4311788 ,4311734 ,4311306))
3 pol2<−cbind (c (510951 ,511005 ,511069 ,511054) ,
4 c(4311557 ,4311498 ,4311547 ,4311621)) # pol2 de f ines a hole
5 pol3<−cbind (c (509276 ,509296 ,510136 ,510156) ,
6 c(4309100 ,4309806 ,4309815 ,4309100))

Visualize the location of the plots:

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h ="
l i n " , ex t=sunflower@bbox)

2 polygon (pol1 , border= " blue " , lwd
=3)

3 polygon (pol2 , border= " blue " , lwd
=3)

4 polygon (pol3 , border= " blue " , lwd
=3)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 39 / 76

Create a sp object from scratch (cont’)

We define a SpatialPolygons object named myplots with the
three polygons defined earlier. First, we create three parts, indicating
which parts are holes:

1 par t1<−Polygon (pol1 , hole=FALSE)
2 hole2<−Polygon (pol2 , hole=TRUE)
3 par t3<−Polygon (pol3 , hole=FALSE)

Then, we create features that group one or more parts; each feature
has a distinct ID of character type (in this example, the first feature has
a “positive” part and a hole):

1 f ea t1<−Polygons (l i s t (part1 , hole2) , ID=" 0 ")
2 f ea t2<−Polygons (l i s t (par t3) , ID=" 1 ")

Finally, we group the features and associate the CRS:

1 myplots<−Spat ia lPo lygons (l i s t (feat1 , fea t2) , p r o j 4 s t r i n g =CRS(utm
.29))

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 40 / 76

Manipulate the structure of sp objects
We can use sp methods to determine the extent of of myplots and
select from parcels.utm a subset of parcels which centroids fall
within the extent of myplots.

1 ext<−ex ten t (myplots) # ob jec t o f c lass ex ten t

Select parcels which coordinates are in ext:

1 xy<−coord ina tes (parce ls . utm) # r e t u r n the
cen t ro ids o f the 7687 fea tu res

2 c o nd i t i on<− xy [, 1] > ext@xmin & xy [, 1] <
ext@xmax & xy [, 2] > ext@ymin & xy [, 2]
< ext@ymax # TRUE i f xy f a l l s i n t o ext

3 myparcels<−parce ls . utm [cond i t i on ,]

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t=
ext)

2 p l o t (myplots , add=TRUE, border= " blue " , lwd =2)
3 p l o t (myparcels , border= " ye l low " , add=TRUE,

lwd =2)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 41 / 76

Overview of methods in package sp

1 Standard methods: “[” to select rows (features) or columns of the
attribute table, “[[” extract column, “[[’<-’ assing new value to
column, plot, summary, print, dim and names to operate on the
attribute table, as.data.frame, as.matrix and image for gridded
data, lines, points, subset, stack, over for spatial joins, spplot,
length for number of features.

2 Spatial methods: dimensions returns number of spatial
dimensions, spTransform (requires rgdal), bbox, coordinates,
gridded for SpatialPixels and SpatialPoints, spplot, over, spsample
samples point coordinates, geometry strips the data.frame and
returns just the geometry.

To manipulate sp objects further one needs to explore the structure of
each class, namely Points, Lines, and Polygons classes.

Note: there are also Grid classes but that data format has been
explored earlier with package raster.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 42 / 76

Extract pixel values within spatial features
Remote sensing imagery is an increasingly available source of data.
With R there are many ways of extracting pixel values from imagery at
given locations. This can be done with the high-level extract {raster}
function, which returns a list of matrices of pixel values, one for each
feature of the input. When weights=TRUE, the output includes the
proportion of each pixel that is contained in the feature.

Let’s apply extract to extract pixel values for ‘table grape’ features,
with cellnumbers=TRUE to return the indices of the pixels in b.

1 tab legrape<−parce ls . merge [parce ls . merge$name==" tab le grape " ,]
2 out<− r a s t e r : : e x t r a c t (b , tablegrape , weights=TRUE, normal izeWeights

=FALSE, cel lnumbers=TRUE)
3 round (out [[2 0]] , 3) # p i x e l values f o r the 20− th f ea tu re

cell band1 band2 band3 band4 band5 band7 weight
[1,] 695121 0.103 0.140 0.156 0.267 NA NA 0.27
[2,] 695122 0.108 0.140 0.165 0.258 NA NA 0.01
[3,] 696120 0.088 0.110 0.117 0.267 0.259 0.168 0.19
[4,] 696121 0.097 0.130 0.144 0.258 NA NA 0.99

...
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 43 / 76

Extract pixel values within spatial features
We can superimpose the feature over the image and add the weights:

1 par (mfrow=c (1 ,1) ,mar=rep (0 ,4))
2 i d x f e a t<−20 # d i sp lay the 20− th

f ea tu re
3 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h ="

l i n " , ex t= tab legrape [i dx f ea t
,] @bbox)

4 p l o t (tab legrape [i d x fe a t ,] , co l=
rgb (r =1 ,b=0 ,g=1 , alpha = .7) ,
add=TRUE)

5 xy<−coord ina tes (b) [out [[i d x f e a t
]] [, " c e l l "] ,]

6 t e x t (xy [, 1] , xy [, 2] , out [[i d x f e a t
]] [, " weight "])

0.01

0.07 0.81 0.27

0.42 1 0.99 0.55 0.03

0.06 0.79 1 1 0.81 0.16

0.04 0.71 1 0.92 0.26

0.01 0.42 0.09

Indices out[[index]][,"cell"] are used to obtain the pixel’s
coordinates. Option ext=tablegrape[idxfeat,]@bbox draws
raster just over the feature’s extent and col=rgb(r=1,b=0,g=1,
alpha=.7) defines “yellow” with 70% opacity.
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 44 / 76

Geographic data analysis with package rgeos

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 45 / 76

Package rgeos

Package rgeos implements the methods of the OGC standard (see
Slide 26).

However, the major spatial analysis functions from package rgeos
apply to valid geometric objects. Hence, it can be important to use
function gIsvalid to select valid objects and obtain some information
about non-valid ones.

Here, we check if the 7687 features of parcels.utm are valid:

1 v a l i d<−g I sVa l i d (parce ls . utm , by id=TRUE, reason=TRUE)
2 i dx<−which (v a l i d ! = " Va l i d Geometry ")
3 i dx # fea tu re 4129

In the next slide we will see that the feature self intersects, and its
vertices 24 and 33 have the same coordinates:

1 parce ls . utm [idx ,] @polygons [[1]] @Polygons [[1]] @coords [c (24 ,33) ,]

[,1] [,2]
[1,] 494784.5 4324416
[2,] 494784.5 4324416
Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 46 / 76

Validity of geometries
The output of valid helps us to understand where the problem lies:

1 v a l i d [i dx] # 4128 " Ring Sel f−
i n t e r s e c t i o n [494784.53235936
4324416.33533211]"

2 p l o t (parce ls . utm [idx ,]) #
3 D <− 25 # def ine some neighborhood
4 p l o t (parce ls . utm [idx ,] , x l im=c(494784−D,

494784+D) , y l im=c(4324416−D, 4324416+D
))

5 # p r i n t coord ina tes o f v e r t i c e s
6 xy<−parce ls . utm [idx ,] @polygons [[1]]

@Polygons [[1]] @coords
7 t e x t (xy , apply (round (xy) ,1 , paste , co l lapse="

, "))
8 # p r i n t i nd i ces o f the v e r t i c e s
9 p l o t (parce ls . utm [idx ,] , x l im=c(494784−D,

494784+D) , y l im=c(4324416−D, 4324416+D
))

10 t e x t (xy , l a b e l s =1: nrow (xy) , pos=c (1 ,2 ,3 ,4) ,
cex = .8) # v e r t i c e s 24 and 33 co inc ide

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 47 / 76

Some basic properties of geometric objects

All geometric objects have basic properties which depend on their
dimension. For instance,

1 (length) A curve has a length, which is the length of the
linestring. If the curve is multipart, its length is the sum of the
lengths of all parts;

2 (area) area is a property of surface objects; If a surface object is
multipart, its area is the sum of the areas of each part;

3 (centroid) is the point of the center of
mass of the object, which might lie or
not on the object;

4 (PointOnSurface) returns a point that
lies on the object.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 48 / 76

Some basic properties of geometric objects returned by rgeos

Recall that myplots has a hole in the 1st feature. Let’s compare the
areas returned by the slot @area and gArea(myplots):

1 myplots@polygons [[1]] @area # 1 s t f ea tu re : 296375 (m2)
2 myplots@polygons [[2]] @area # 2nd fea tu re : 611030 (m2)
3 gArea (myplots , by id=TRUE) # both fea tu res : 288873 611030 (m2)

While the slot @area of a sp object returns the area of “positive”
polygons but doesn’t take into account holes, gArea returns the true
area of the feature, after holes are removed.

Note that you can get the @area values for all features using sapply
since myplots@polygons is a list of features.

1 sapply (myplots@polygons , f u n c t i o n (f e a t) feat@area) # 296375
611030

Some properties are returned as new sp objects:

1 gPointOnSurface (myplots , by id=TRUE) # re tu rns S p a t i a l P o i n t s

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 49 / 76

Methods for testing spatial relations
Given geometric objects a and b of dimension 0 (p), 1 (L) or 2 (P):

1 Equal: the objects coincide;
2 Disjoint: the objects do not intersect;
3 Touches applies to two objects as long as at least one has

dimension larger than 0: a Touches b if they intersect at their
boundaries;

4 For a/b of type p/L, p/P, L/L or L/P, a Crosses b if the geometries
overlap but a is not within b nor b is within a;

5 a Within b if a doesn’t intersect the exterior of b;
6 Overlaps applies to objects of the same dimension: It is true is a

and b intersect but a is not within b nor b is within a;
7 a Contains b if b Within a;
8 a Intersects b if a and b are not Disjoint;
9 Relates allows us to define any kind of spatial relation between a

and b by testing the intersections between the interior, boundary,
and exterior of both objects.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 50 / 76

Methods for testing spatial relations (cont’)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 51 / 76

Geometries and spatial relations: further details

The formal definition of spatial relations is based on the Dimensionally
Extended 9-Intersection model DE9IM (Egenhofer, Clementini et al.)
which uses the 9 intersections one can define between the interior,
boundary and exterior of two geometric objects.

In particular, the spatial relation Relates can be defined in any possible
way allowed by the DE9IM model.

The details can be found in the above mentioned source
www.opengeospatial.org/standards/sfa (Simple Feature Access -
Part 1: Common Architecture).

A description of DE9IM and the derived definitions of spatial relations
are also available at en.wikipedia.org/wiki/DE-9IM.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 52 / 76

en.wikipedia.org/wiki/DE-9IM

Methods for testing spatial relations: logical matrices

Consider the two following feature classes (fc):
1 fc streams of type curve with two singlepart objects (1 and 2)

where each feature represents a stream;
2 fc counties of type surface with three singlepart objects (a, b, c)

where each feature represents a county.

The result of the method Intersects: “streams intersects counties”
is the following:

s
t
r
e
a
m
s counties

intersects a b c
1 T F T
2 F F T

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 53 / 76

Methods for testing spatial relations: logical matrices (cont’)

Within relations “streams within counties”

s
t
r
e
a
m
s counties

within a b c
1 F F F
2 F F T

The above example is equivalent to using the relation Contains if
inputs are switched around: “counties contains streams”

c
o
u
n
t
i
e
s streams

contains 1 2
a F F
b F F
c F T

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 54 / 76

Methods for testing spatial relations with rgeos

The package rgeos includes functions that implement OGC methods
for testing spatial relations: gIntersects, gWithin, gContains,
gContainsProperly, gCovers, gCoveredBy, gCrosses,
gEquals, gEqualsExact, gOverlaps, gRelate, gTouches.
Before we start using methods that apply to more than one data set,
and to prevent meaningless error messages, let’s first make CRS
strings equal, since we know that both data sets have the same CRS:

1 myplots@pro j4st r ing<−myparcels@proj4st r ing

Let’s determine which parcels intersect the features in myplots:

1 g i t s<−g I n t e r s e c t s (myplots , myparcels , by id=
TRUE, c h e c k V a l i d i t y =TRUE) # mat r i x o f
TRUE and FALSE

2 dim (g i t s) # the mat r i x i s 62*2 because
myparcels has 62 fea tu res and myplots
has 2 fea tu res

3 t a i l (g i t s)

0 1
609 TRUE FALSE
611 FALSE FALSE
612 FALSE FALSE
613 FALSE FALSE
614 TRUE FALSE
617 TRUE FALSE

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 55 / 76

Methods for testing spatial relations with rgeos (cont’)

Instead of gIntersects, we use gContains to determine which
parcels are totally contained in some feature of myplots:

1 gcts<−gContains (myplots , myparcels , by id=TRUE, c h e c k V a l i d i t y =TRUE
) # mat r i x o f TRUE and FALSE

2 t a i l (gc ts) # l a s t rows of the mat r i x
3 which (apply (gcts ,1 ,max) ==1) # re tu rns 5 fea tu re ind i ces

> which(apply(gcts,1,max)==1)
307 327 601 608 609
9 22 49 56 57

> tail(gcts)
0 1

609 TRUE FALSE
611 FALSE FALSE
612 FALSE FALSE
613 FALSE FALSE
614 FALSE FALSE
617 FALSE FALSE

Looking at gcts, one concludes
that features named 608 and 609
of myparcels are contained in the
1st feature of myplots, and
features named 307, 327, and 601
of myparcels are contained in the
2nd feature of myplots.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 56 / 76

Spatial query

The output of gIntersects, gWithin, gContains, etc, can be
used to perform a spatial query, also called a “selection by location.”

Earlier, we used the “[” method of sp, to perform selection of features
by attributes. A selection requires some condition which is TRUE or
FALSE for each row of the table, i.e. for each feature.

Using the logical matrices produced by e.g. gIntersects, we can
define a logical vector to perform a selection. For example, the vector

1 apply (gcts , 1 ,max) ==1 # l o g i c a l vec to r o f leng th 62; i t i s TRUE
i f the corresponding row of gcts=gContains (myplots ,
myparcels , by id=TRUE) has at l e a s t one TRUE value

in the previous slide indicates which parcels from myparcels are
contained in at least one feature of myplots. To obtain the result of
the corresponding spatial query, we just have to write

1 myparcels [apply (gcts , 1 ,max) ==1 ,] # new SpatialPolygonsDataFrame

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 57 / 76

Spatial analysis: computing distances and new geometric objects

Up to this point, spatial analysis was only used to do queries on the
data and to relate (join) information from spatial location.

The OGC/ISO standard (see Slide 26) also defines a set of operators
which return the distance between geometric objects or return new
geometric objects from existing ones according to some spatial
relation. The standard operators are: Distance, Buffer, ConvexHull,
Intersection, Union, Difference, and Symmetric Difference.

The results of some of these methods, namely Distance and Buffer,
depend on the distance between any two points and therefore vary
with the Coordinate Reference System associated to the geometry.

For instance, the distance measured on a geographic CRS
(latitude/longitude) is in general quite different from the distance
measured on projected coordinates for large distances.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 58 / 76

Spatial analysis: computing distances and new geometric objects
(cont’)
Given two geometric objects a and b:

1 Distance between a and b returns the shortest distance between
points of a and points of b;

2 Buffer of a with distance d returns a geometric object that
represents all points whose distance to a is less or equal to d ;

3 ConvexHull of a returns a geometric object that represents the
convex hull of all points in a;

4 Intersection of a and b returns the geometric object that
represents all the points that belong to a and b;

5 Union of a and b returns the geometric object that represents all
the points that belong either to a or to b;

6 Difference between a and b returns the geometric object that
represents all the points that belong to a but not to b;

7 Symmetric Difference of a and b returns the geometric object that
represents all the points that either (1) belong to a but not to b, or
(2) belong to b but not to a.

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 59 / 76

Spatial analysis: computing distances
The method Distance returns distances between geometric objects a
of feature class A and geometric objects b of feature class B. The
output is a distance matrix.

Let A and B be surface features classes (i.e. of polygon type) with the
same CRS:

1 fc A with objects singlepart a1 and a2 (gray shape);
2 fc B, with objects singlepart b1 and b2 (black border).

The distance matrix is on the right hand side. It indicates that all
distances are 0 except for the pair (b1, a2).

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

b1

b2

a1 a2

distance b1 b2
a1 0.00 0.00
a2 1.00 0.00

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 60 / 76

Computing distances with gDistance

R has many packages that can be used to compute distances between
locations like rdist {fields}, nn2 {RANN}, distGeo {geosphere}, and
gDistance {rgeos} to apply method Distance to sp objects.

The following command returns a 62 × 2 matrix of distances between
the features. It uses the vertices of each feature: the value [i,j] is the
shortest distance between all pairs of vertices from the i-th feature of
myparcels and the j-th feature of myplots. Hence, all pairs of
features that intersect (see gIntersects) have distance 0.

1 gDistance (myplots , myparcels , by id=TRUE)

As a result, function gDistance is slow for large data sets. As an
alternative, one can “simplify” one or both feature classes:

1 gDistance (gS imp l i f y (myplots , t o l =10) , gS imp l i f y (myparcels , t o l =10)
, by id=TRUE) # or rep lace fea tu re by cen t ro i d :

2 gDistance (myplots , gCentro id (myparcels , by id=TRUE) , by id=TRUE)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 61 / 76

Spatial analysis: Intersection method
The Intersection method returns new geometric objects derived from
the objects in the inputs. It is applied to every pair (a,b) , where a
belongs to feature class A and b belongs to feature class B.

In this example, there are 4 pairs of objects, all singlepart, and the
output of Intersection has the 3 red objects depicted below. Since a2
and b1 do not intersect, there is no new object resulting from that pair.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

b1

b2

a1 a2

a1

b1

intersecção a1 b1

b1

b2

a1 a2

b2

intersecção a1 b2

b1

b2

a1 a2

a2

intersecção a2 b1

b1

b2

a1 a2

intersecção a2 b2

b1

b2

a1 a2

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 62 / 76

Spatial analysis: Intersection method (multipart objects)
In the example below,

feature class A has two single part geometric objects a1 and a2
(i.e. two features), depicted in gray, and
feature class B has a single multipart geometric object b (i.e. a
single feature), depicted by a black border.

As before, the operation is applied to all pairs (a,b), where a belongs
to A and b belongs to B. In this example, there are two pairs (a1,b)
and (a2,b). The output has two objects depicted in red; the one on the
left is multipart; the one on the right is singlepart.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

y

b

a1 a2

2 parte(s)

a1 Intersection b

1 parte(s)

a2 Intersection b

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 63 / 76

Computing intersections with gIntersection

There are at most 62 × 2 possible intersections betweens features of
myparcels and myplots, but in most cases the intersection is
empty. The following command returns an object of class
SpatialPolygons (with no attribute table) and all non empty
features defined by all 62 × 2 intersections:

1 g i t s<−g I n t e r s e c t i o n (myplots , myparcels , by id=TRUE) # re tu rns
Spat ia lPo lygons wi th 22 fea tu res

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t=
ext)

2 p l o t (myplots , add=TRUE, border= " blue " , lwd =2)
3 p l o t (myparcels , border= " ye l low " , add=TRUE,

lwd =2)
4 p l o t (g i t s , border= " b lack " , add=TRUE, lwd =3)
5 xy<−coord ina tes (g i t s)
6 t e x t (xy [, 1] , xy [, 2] , 1 : leng th (g i t s) , cex=2 ,

co l= " whi te ")

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 64 / 76

Spatial analysis: Union method
This method is also applied to all pairs of objects (a,b), where (a
belongs to A and b belongs to B. In the example below,

feature class A has a single multipart geometric object a (i.e. a
single feature with two parts), and
feature class B has also a single multipart geometric object b (i.e.
a single feature with two parts).

The operation is applied to the single pair (a,b). In this case the output
has a unique singlepart object which is, therefore, spatially connected.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

y

b

a

1 parte(s)

a Union b

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 65 / 76

Spatial analysis: Difference method
This method is also applied to all pairs of objects (a,b), where (a
belongs to A and b belongs to B, but depends on the order of the
inputs. In the example below,

feature class A has two single part geometric objects a1 and a2
(i.e. two features), and
feature class B has a single multipart geometric object b (a single
feature with two parts).

In this example, there are two pairs (a1,b) and (a2,b). The output has
two objects depicted in red, both singlepart.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

y

b

a1 a2

1 parte(s)

a1 Difference b

1 parte(s)

a2 Difference b

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 66 / 76

Spatial analysis: Symmetric Difference method
Unlike Difference, the result of Symmetric Difference does not depend
on the order of the inputs. In the example below,

feature class A has a single multipart geometric object a (i.e. a
single feature), and
feature class B has also a single multipart geometric object b (i.e.
a single feature).

The operation is applied to the single pair (a,b). In this case the output
has a unique multipart geometric object, with 4 parts: areas in a but
not in b, and areas in b but not in a.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

y

b

a

4 parte(s)

a SymDifference b

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 67 / 76

Aggregating features with gUnaryUnion

Often, one needs to “dissolve” features, i.e. return the feature class
with intersecting geometries merged. To do this, it is just necessary to
define the new membership of the features in the output.

Suppose we want to merge features in myparcels which have the
same subsidy code, defined by myparcels$COSSUBSIDY:

1 umy<−gUnaryUnion (myparcels , i d =myparcels$CODSUBSIDY)

Visualize new features over the original ones;
the faded boundaries have been removed.

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t=
ext=ex ten t (myparcels))

2 p l o t (myparcels , add=TRUE, co l= " ye l low " , lwd
=3)

3 L<− l e v e l s (myparcels$CODSUBSIDY)
4 p l o t (umy, co l=rainbow (leng th (L) , alpha =0.7)

, add=TRUE)
5 legend (" bo t tomr igh t " , legend=L , f i l l =rainbow

(leng th (L))) MEA
OTH
SUR

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 68 / 76

Computing differences with gDifference

Let’s use gDifference to determine the parts of myplots (2
features) that are not covered by features in sunflower (6 features).

1 g d i f f<−gDi f fe rence (myplots , myparcels , by id=TRUE) # re tu rns 6*2
fea tu res

returns all 12 possible combinations. But if we apply gUnaryUnion to
sunflower first, we only get the two differences between myplots
and the aggregate area of sunflower:

1 g d i f f<−gDi f fe rence (myplots , gUnaryUnion (
sunf lower) , by id=TRUE)

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t=
ex ten t (myplots))

2 p l o t (myplots , add=TRUE, border= " blue " , lwd =3)
3 p l o t (sunf lower , add=TRUE, border= " b lack " ,

lwd =3)
4 p l o t (g d i f f , co l= " ye l low " , add=TRUE)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 69 / 76

Computing buffers with gBuffer

Determining buffers is a typical GIS operation that is performed on
spatial data. Buffers can be positive or negative.

Suppose that we want to determine the sunflower parcels which are
totally contained inside myplots:

1 gWith in (sunf lower , myplots , by id=TRUE) # TRUE f o r one fea tu re

If we expand myplots by 20 meters with gBuffer:

1 gWith in (sunf lower , gBuf fe r (myplots , by id=
TRUE, width =20) , by id=TRUE) # TRUE f o r
two fea tu res

1 plotRGB (b , r =4 ,g=3 ,b=2 , s t r e t c h =" l i n " , ex t
=1.1 * ex ten t (myplots))

2 p l o t (sunf lower , add=TRUE, border= " ye l low " ,
lwd =2)

3 p l o t (myplots , add=TRUE, border= " blue " , lwd =2)
4 p l o t (gBuf fe r (myplots , by id=TRUE, width =20) ,

add=TRUE, border= " red " , lwd =2)

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 70 / 76

Overview

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 71 / 76

General view of packages raster e sp

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 72 / 76

Main methods from raster

1 Read/write: raster(), brick() stack() (multilayer images)
and writeRaster()

2 Coordinate reference systems: projection() or @crs
3 Spatial resolution: res()
4 Extension: extent() or @extent
5 Range of values: @data
6 Reprojection: projectRaster()
7 Pixel coordinates: coordinates()
8 Pixel values: values()
9 Extract pixel values at given locations: extract()
10 Crop: crop()
11 Mosaics: merge() and mosaic()
12 Slope, aspect and hillshading for DEM : terrain(),

hillShade()
13 Linear and non linear filters: focal()

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 73 / 76

Main methods from sp

1 Read/write: readOGR() and writeOGR()

2 Coordinate reference systems: proj4string() or
@proj4string

3 Extension: bbox() or @bbox
4 Attribute table: @data
5 Reprojection: spTransform()
6 Coordinates of feature’s centroids: coordinates()
7 List of features: @polygons or @lines
8 List of parts of the i-th feature: @polygons[[i]]@Polygons
9 List of parts of the i-th feature: @lines[[i]]@Lines
10 Join tables: merge()
11 Convert to raster: rasterize()

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 74 / 76

File formats for read/write

1 To list file formats that can be accessed through readOGR() and
writeOGR():

1 ogrDr i ve rs ()

2 To list raster formats that can be accessed through raster()
and writeRaster():

1 wri teFormats ()

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 75 / 76

Index
CRS, 15
GetMap {RgoogleMaps} ,
12
Polygons, 40
Polygon, 40
RasterBrick, 7
RasterLayer, 7
RasterStack, 7
SpatialLinesDataFrame,
33
SpatialPolygonsDataFrame,
33
SpatialPolygons, 40
apply, 55
cellStats, 11
class Polygon, 46, 47
coordinates, 11
crop, 10, 15
crs, 14
drawExtent, 13
extent, 13, 15
extract, 43
gArea, 49
gBuffer, 70

gContains, 55
gDifference, 69
gDistance, 61
gIntersection, 64
gIntersects, 55
gIsValid, 46, 47
gPointOnSurface, 49
gUnaryUnion, 68
gmap {dismo}, 12, 13, 16
grep, 38, 39
legend, 35
locator, 13
merge, 36
ncell, 10
nlayers, 8
overlay, 11
package raster, 4
package rgdal, 4
package rgeos, 4, 46
package sp, 4
plotRGB, 9, 17, 35, 38, 39,
44
proj4string, 34
projectExtent, 15

projectRaster, 35
range, 10
readOGR, 34, 46
rgb, 44
sapply, 49
slot bbox, 33, 35
slot data, 33
slot polygons, 46, 47
slot proj4string, 33
slotNames, 34
sp::merge, 36
boundary, 29
DE9IM , 52
Dimension, 29
exterior, 29
geometric object, 27
geometry, 27
interior, 29
OGC, 26
package sp, 32
selection by location, 57
spatial query, 57

Manuel Campagnolo (ISA/ULisboa) Geographic data with R OpenSpat 2017: module 1 76 / 76

	Introduction
	Raster data sets
	Some brief notes on coordinate reference systems
	Vector data sets
	Geographic data analysis with package rgeos
	Overview

