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Sources and Consequences of Spatial Autocorrelation

Sources and Consequences of Spatial Autocorrelation

When we detect an apparent spatial autocorrelation (on residuals for ins-

tance), this spatial autocorrelation may or may not be the result of a spatial
autocorrelation.

In 1984, Miron identified three sources of apparent or real spatial
autocorrelation :

m interaction
m reaction

m misspecification
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Sources and Consequences of Spatial Autocorrelation

Sources of spatial autocorrelation : example

Imagine a population of plants growing in a particular region :
m Y, measurement of plant productivity (tree height or population density).

m Population is sufficiently dense relative to the spatial scale = productivity
measurement may be modeled as varying continuously with the location.

m X;; the amount of light available at location i.
m Xj» the amount of available nutrients at location /.

Using these two explanatory variables, the simplest model is :

Yi=fo+ biXin + FXip + e, with ¢ ~ N(0,02). (1)

1.1.4.
In matrix notation :

Y = XB+e (2)
e ~ N(0,5%1).

The following three notions can be combined in a same model.
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Sources and Consequences of Spatial Autocorrelation Source : interaction

Source : interaction

Spatial autocorrelation induced by interaction occurs when the response
variables at different sites interact with each other.

m Negative autocorrelation may occur if trees in close proximity compete with
each other for light and nutrients, so that relatively productive tree
populations tend to inhibit the growth of other trees.

m Positive autocorrelation would occur if existing trees produced acorns that
do not disperse very far, which in turn results in more trees in the vicinity.

If Y is positively autocorrelated, the true underlying model is :

Y = XB+pWY +e¢ (3)
e ~ N(0,0%)),

with WY the spatial lag.
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Sources and Consequences of Spatial Autocorrelation Source : interaction

Interaction : illustration using simulations (1/2)

We generate a dataset simu_modlin satisfying model (2) with 8 = (0,0.5,0.3)
and a dataset simu_interaction satisfying model (3) with 5 = (0,0.5,0.3) and
p = 0.6. Each dataset contains 1000 observations and X; and X, are simulated
independently using gaussian distributions.

mod <- Im(Ylin ~ X1 + X2)
print (coef (mod), digits = 2)

## (Intercept) X1 X2
## -0.00021 0.49979 0.30028
var (mod$res)

## [1] 9.560601e-05
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Sources and Consequences of Spatial Autocorrelation Source : interaction

Interaction : illustration using simulations (2/2)

mod <- lm(Yinter ~ X1 + X2)
print (coef (mod), digits = 2)

## (Intercept) X1 X2
## 0.028 0.556 0.316
var (mod$res)

## [1] 0.05820449
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Source : reaction

Spatial autocorrelation induced by reaction occurs when the response
variables are reacting to an external factor that varies in space, and when
this factor is not taken into account by the model.

For instance if nearby plants are reacting to availability of water (which varies in
the 'space’).

The inclusion of this external factor in the linear model may be appropriate. It
may be sufficient to explain the spatial autocorrelation, and to obtain
non-autocorrelated residuals.

For instance, the true model should be :

Y = Bo + B X + B2 Xia + B3 Xiz + €, with e ~ N(0,0%),  (4)

i.i.d.

with Xi3 the distance from the river at location i.
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (1/4)

We generate a dataset simu_reactionl satisfying model (4) with
6 =(0,0.5,0.3,0.8) and X3 correlated with X;.

We fit model (4) :
print (coef (lm(Yreactl ~ X1 + X2 + X3)), digits = 2)

## (Intercept) X1 X2 X3
## 0.0088 0.4837 0.3315 0.7716

mod <- Im(Yreactl ~ X1 + X2)
print (coef (mod), digits = 2)

## (Intercept) X1 X2
## 0.51 0.50 1.01

X3 maybe interpreted as a ‘spatial’ variable, but its role in the model is identical
to that of another explanatory variable without any spatial connotation.
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (2/4)

We generate a dataset simu_reactionl satisfying model (4) with
B =(0,0.5,0.3,0.8), and X3 non correlated with Xj or X5 but spatially
autocorrelated.

We fit model (4) :

mod <- lm(Yreact2 ~ X1 + X2 + X3)
print (coef (mod), digits = 2)

## (Intercept) X1 X2 X3
## 0.027 0.483 0.327 0.768
var (mod$res)

## [1] 1.003906
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (3/4)

We fit model (1) :

mod <- lm(Yreact2 ~ X1 + X2)
print (coef (mod), digits = 2)

## (Intercept) X1 X2
## 0.046 0.481 0.321
var (mod$res)

## [1] 1.863427

The effect of X3 which is not taken into account in this model is entirely loaded
in the error term.
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Sources and Consequences of Spatial Autocorrelation Source : reaction

Reaction : illustration using simulations (4/4)

As X3 was spatially autocorrelated, the result is that the residuals are spatially
autocorrelated :

Im.morantest (mod, W)

##

## Global Moran I for regression residuals
##

## data:

## model: lm(formula = Yreact2 ~ X1 + X2)

## weights: W

##

## Moran I statistic standard deviate = 5.6528, p-value = 7.892e-09
## alternative hypothesis: greater

## sample estimates:

## Observed Moran I Expectation Variance

## 0.1295740253 -0.0010112445 0.0005336546
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Sources and Consequences of Spatial Autocorrelation Source : misspecification

Source : misspecification

The measured autocorrelation is not due to interaction or reaction but to
the incorrect form of the model.

For instance if we assume homoscedastic errors when in fact they are
heteroscedastic.

The true model should be (the variance of the errors increases with the amount of
available nutrients Xj,) :

Y = XB+e (5)
€& .~ N(0,0% x exp(1 + 2X:2)).
1.1.d.
In this case, the measured autocorrelation can be induced by the wrong
modelisation, it is then an apparent autocorrelation and not a real autocorrelation
(this autocorrelation cannot be explained by spatial considerations).
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Sources and Consequences of Spatial Autocorrelation Source : misspecification

Misspecification : illustration using simulations (1/2)

We generate a dataset simu_modmiss satisfying model (5) with § = (0,0.5,0.3).
X> spatially autocorrelated and the error variance is an increasing function of X;.

We fit model (2) :

mod <- Im(Ymiss ~ X1 + X2)
print (coef (mod, digits = 2))

## (Intercept) X1 X2
## 30.95456  -68.36515 84.34902
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Sources and Consequences of Spatial Autocorrelation Source : misspecification

Misspecification : illustration using simulations (2/2)

Im.morantest (mod, W)

##

## Global Moran I for regression residuals
##

## data:

## model: lm(formula = Ymiss ~ X1 + X2)

## weights: W

##

## Moran I statistic standard deviate = 2.3661, p-value = 0.008989
## alternative hypothesis: greater

## sample estimates:

## Observed Moran I Expectation Variance

## 0.159988117 -0.014521469 0.005439884

The error terms are uncorrelated, but because the error variance is a function of
Xz and high values of X, tend to be near other high values of X3, a test for
spatial autocorrelation of the residuals has a high type | error rate.

Meili Baragatti Models for Spatial Data 14/78



. . SO Ueiibio Ui LR oppatiatl s SRR SRERRSERE
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Interaction

reaction

Consequences of the spatial autocorrelation

biased estimates of the regression coefficients, the variance of
the residuals is inflated = inflated type | or Il error rates of
certain tests.

If the reaction variable (not included in the model) is
correlated to a variable present in the model, the estimate of
the coefficient associated with the variable present in the
model will be biased.

If the reaction variable (not included in the model) is not
correlated to a variable present in the model, but is spatially
autocorrelated, the variance of the residuals will be inflated,
= inflated type | or Il error rates and indication of spatial
autocorrelation when none really exists.

Misspecification If the model is misspecified, that can lead to both biased

Meili Baragatti

estimates of the regression coefficient and indication of
spatial autocorrelation when none really exists.
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Working example : Las Rosas

Spatial regression models in practice (1/2)

Fit the data with a classical linear model like (2).

Check the model assumptions on the residuals : normality,
homoscedasticity and independence.

Non-normality histogram, Q-Q plot, Shapiro-Wilk test,
Kolmogorov-Smirnov test.

Heteroscedasticity or the exclusion of a reaction variable plot the
residuals against the fitted values, and against the
different variables included or not in the model.

Dependence try to detect a spatial autocorrelation of the residuals :
bubble plots, semi-variograms, Moran correlogram, test
for spatial autocorrelation of the residuals using the
Moran's /.
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Working example : Las Rosas

Spatial regression models in practice (2/2)

If we detect some problems on the residuals :

Non-normality the model can be misspecified. Try a transformation of
your variable to be explained and/or of your explanatory
variables. It can also be the consequence of a relevant
explanatory variable forgotten in the model.

Homoscedasticity or the exclusion of a reaction variable take into
account this heteroscedasticity in your model.

Dependence check that you have not forgotten a reaction variable,
and that you are not in presence of heteroscedasticity.

If not, fit a more complicated model with an
autocorrelation structure : spatial lag model, spatial
error model or an extended linear model with a spatial
autocorrelation structure.
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Example Las Rosas (1/16)

Data set from Anselin et al. 2001.

m Measurements of corn yield over a controlled plot in Argentina. Regular grid
approximately 71 cm apart.

m Amount of nitrogen fertilizer that is applied on each location : 6 levels
applied along the rows of the field.

m The basic set of information consists of four variables measured at 1704
locations : YIELD, N, LATITUDE, LONGITUDE.

m Xutm a SpatialPointsDataFrame object containing the yield and relevant
geographical variables to explain it (N, elev, slope, slopeX, accu, aspect
and hshade).

Objective

Do some of the explanatory variables influenced the observed yield variability in the
field 7
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Working example : Las Rosas

Example Las Rosas (2/16)

Yield
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Example Las Rosas (3/16)

Nitrogen

0,24.92]

24.92,49.84
. (49.84.74.76
74.76,99.68
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Example Las Rosas (4/16)

Soil aspect
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Las Rosas

Working example :

Example Las Rosas (5/16)

Water accumulation
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Las Rosas

Working example :

Example Las Rosas (6/16)

Slope
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Working example : Las Rosas

Example Las Rosas (8/16)

A linear regression model model2.1m has been proposed to explained
the yield using all these explanatory variables

Yield; = o + P1N; + Baaspect; + Psaccu; + Paaccu; X slope;j + Bg,slope,-2
+-668CCUiX hshade; + ¢;, (6)

e ~ N(0,0°).
i.i.d.

f<-as.formula("YIELD N+aspect+accutI(accu*slope)+I(slope~2)
+I(accu*hshade)")
model?2.1lm<-1m(f,data=Xutm)

Assumptions should be checked.
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Example Las Rosas (9/16)

dropl(model2.1lm, . ~ ., test="F")

## Single term deletions

#i#

## Model:

## YIELD ~ N + aspect + accu + I(accu * slope) + I(slope~2)

## Df Sum of Sq RSS  AIC F value Pr (>F)

## <none> 268414987 20404

## N 1 15974896 284389884 20501 101.06 < 2.2e-16 ***
## aspect 1 60476672 328891660 20748 382.58 < 2.2e-16 ***
## accu 1 15952225 284367213 20501 100.91 < 2.2e-16 ***
## I(accu * slope) 1 38921239 307336226 20633 246.22 < 2.2e-16 **x
## I(slope~2) 1 107828744 376243732 20978 682.13 < 2.2e-16 *%**
## ---

## Signif. codes: O '**x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Example Las Rosas (10/16)

Residuals vs Fitted Normal Q-Q
4 3
N 0 O
3 E
2
2
g o g o
T o B
g 84 5
& 5 B
Y
g %A
]
3
8
2 4 5560
' T ow
L S R B e T T T T T T
1500 2500 3500 4500 8 -2 -1 0 1 2 3
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
o ] [
B
- &
Z 0
T w o
ER= ]
2 3
g 8 o
ERER f:
s B
H EERE
g o | g
& o 7]
< 4
o | " - cooks didfice
B e L e B p T T T T T T T
1500 2500 3500 4500 0.000 0.004 0.008 0.012
Fitted values Leverage

Figure 1 — Diagnostic plots for model2.1m
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Example Las Rosas (11/16)

ks.test (model2.1lm$res, "pnorm", mean = 0, sd = sd(model2.lm$res))

##

## One-sample Kolmogorov-Smirnov test
##

## data: model2.lm$res
## D = 0.032567, p-value = 0.05385
## alternative hypothesis: two-sided
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Example Las Rosas (12/16)
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Figure 2 — Residuals of model2.1m against every possible explanatory variable.
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Working example : Las Rosas

Example Las Rosas (13/16)

Residuals of model2.Im
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Figure 3 — Bubble map for residuals of mod9.
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Example Las Rosas (14/16)
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Figure 4 — Semi-variogram for the residuals of model2.1m.
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Example Las Rosas (15/16)
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Example Las Rosas (16/16)

library(spdep)

nlist <- knn2nb(knearneigh(Xutm,k=8))
W <- nb2listw(nlist,style="W")
Im.morantest (model2.1m,W)

##

## Global Moran I for regression residuals
##

## data:

## model: 1lm(formula = f, data = Xutm)

## weights: W

##

## Moran I statistic standard deviate = 60.822, p-value < 2.2e-16
## alternative hypothesis: greater

## sample estimates:

## Observed Moran I Expectation Variance

## 0.7219463382 -0.0030524805 0.0001420855
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RLELEINET SV LTI Without explanatory variable

Spatial lag model without explanatory variables

A spatial lag model with zero mean value and no explanatory variable has
the form :

Y = pWY +e (7)
e ~ N(0,6°1),

where WY represents the spatial lag.

Interpretation

The value of Y at one location is directly associated with the values of the
process Y at nearby locations.

For instance high productiovity of a plant at one location is associated with
high productivity at nearby locations (but there is no notion of causality).
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Spatial lag model with explanatory variables

A spatial lag model with explanatory variables :

Y = pWY +XB+e (8)
e ~ N(0,0%)).

Interpretation
This model can be interpreted using three points of view (Anselin 1992).

Specification of the spatial weights matrix W and estimation of p are
indicators of the nature and strength of spatial interaction.

Y = (I —pW) Y (XB+¢€), and E(Y) = (I — pW)~1X3 : non-linear effect
of the spatial autocorrelation on the expected value of Y. The influence of
the spatial structure is modelled through the error term and through the
explanatory variables (influence of the neighborhood).

Prediction Y = (I - ﬁW)_lX/S’ is mainly driven by the neighborhood. If we use
Y = X[, we have a bias —(pW) 1X}.
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Spatial Lag Model About the variance-covariance matrix of Y

About the variance-covariance matrix of Y

var(Y) = o?(I —pW) (I — pW')~L.

m Impacted by the magnitude of the variance of the error term 2.

m Impacted by the spatial structure through the term
(I =pW)H (1 = pW") L.

m Enforced by the model, we do not have to specify it. The spatial
autocorrelation structure of Y is enforced by the model.
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Fitting the model

Estimation of the parameters 3, o2 and p

Maximum likelihood approach.

In practice

The expressions of /3, 02 and j that maximise the likelihood are not easy to
obtain (it would be much easier if p was known)
= use of a numerical scheme analogous to the Newton-Raphson method :

m A value of p is fixed.
m Maximum likelihood estimates /3 and o2 calculated with j fixed.

m The two preceding steps are iterated : another value of p increasing
the likelihood is fixed, 3 and 02 are calculated to maximise the
likelihood, then fix 5 again,. ..
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Fitting the model
Spatial lag model : Las Rosas (1/3)

library(spdep)

nlist <- knn2nb(knearneigh(Xutm,k=8))

W <- nb2listw(nlist,style="W")

Xutm$YIELD_scaled <- (Xutm$YIELD-mean(Xutm$YIELD))/sd(Xutm$YIELD)

Xutm$slope_scaled <- (Xutm$slope-mean(Xutm$slope))/sd(Xutm$slope)

f <- as.formula("YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I(accu*hshade)")

mod.lag <- lagsarlm(f,data=Xutm,listw=W)

summary (mod.lag)
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Fitting the model
Spatial lag model : Las Rosas (2/3)

##

## Call:lagsarlm(formula = f, data = Xutm, listw = W)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2674603 -0.1146204 -0.0013436 0.1172232 0.6719409
##

## Type: lag

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|zl)
## (Intercept) -3.6686e-02 1.7260e-02 -2.1255 0.0335489
## N 1.5924e-03 1.1088e-04 14.3611 < 2.2e-16
## accu 1.2602e-03 1.6629e-04 7.5785 3.486e-14
## aspect -1.5240e-02 4.4662e-03 -3.4122 0.0006444

## I(accu * slope_scaled) 2.9292e-04 9.2681e-05 3.1606 0.0015747
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Fitting the model
Spatial lag model : Las Rosas (3/3)

## Rho: 0.90687, LR test value: 2405.7, p-value: < 2.22e-16
## Asymptotic standard error: 0.011712

## z-value: 77.43, p-value: < 2.22e-16
## Wald statistic: 5995.4, p-value: < 2.22e-16
##

## Log likelihood: 327.3626 for lag model

## ML residual variance (sigma squared): 0.033407, (sigma: 0.18278)
## Number of observations: 1704

## Number of parameters estimated: 7

## AIC: -640.73, (AIC for 1m: 1762.9)

## LM test for residual autocorrelation

## test value: 42.144, p-value: 8.4802-11
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Formulation
Spatial Error Model (1/2)

Y = XB+n (9)
n = AWn+e
~ N(0,0%1).

Interpretation

Like a classical linear model, but with a correlated structure for the
error term.
This autocorrelation is generally considered to be a nuisance : the
primary interest is often the relationship between the explanatory
variables X and the response variable Y.
The spatial autocorrelation is just taken into account through the
error term.
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Formulation
Spatial Error Model (2/2)

The influence of the spatial structure is modelled only on the error
term Y = XB + (I — AW) e

Prediction Y = X/ is driven by the values of the explanatory variables at
the location for which we want the prediction. Be careful, to have an unbiased
estimation of 3, you must use the spatial error model and not the classical linear model

if your data are driven by this spatial error model.

This model can be written as a classical linear model :

Y - AMWY = XB—-AWY +n
(X = AWX)5 + ¢
Y = XB+c¢
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RIELEINLTRVET I About the variance-covariance matrix of Y and fitting

About the variance-covariance matrix of Y and fitting

var(Y) = o?(1 = AW) 711 — aw’)~L, (10)

m Impacted by the magnitude of the variance of the error term 2.

m Impacted by the spatial structure through the term
(I = AW) T —aw’)~L.

m Enforced by the model, we do not have to specify it. The spatial
autocorrelation structure of Y is enforced by the model.

Fitting the model
The approach is the same as for the spatial lag model, with p replaced by A.
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About the variance-covariance matrix of Y and fitting
Spatial error model : Las Rosas (1/2)

mod.err <- errorsarlm(f,data=Xutm,listw=W)
summary (mod. err)

##

## Call:errorsarlm(formula = f, data = Xutm, listw = W)
##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2112753 -0.1053701 0.0024866 0.1097140 0.6707100
##

## Type: error

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|zl)
## (Intercept) 0.48112487 0.16667563 2.8866 0.003894
## N 0.00195918 0.00011087 17.6711 < 2.2e-16
## accu 0.01252811 0.00080061 15.6483 < 2.2e-16
## aspect -0.14706321 0.04800230 -3.0637 0.002186

## I(accu * slope_scaled) 0.00198320 0.00077652 2.5540 0.010651
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About the variance-covariance matrix of Y and fitting
Spatial error model : Las Rosas (2/2)

## Lambda: 0.92271, LR test value: 2482.1, p-value: < 2.22e-16
## Asymptotic standard error: 0.011007

## z-value: 83.826, p-value: < 2.22e-16
## Wald statistic: 7026.9, p-value: < 2.22e-16
##

## Log likelihood: 365.5709 for error model

## ML residual variance (sigma squared): 0.031578, (sigma: 0.1777)
## Number of observations: 1704

## Number of parameters estimated: 7

## AIC: -717.14, (AIC for 1m: 1762.9)
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Choosing Between Spatial Lag and Spatial Error models

(1/2)

Spatial autocorrelation detected in residuals of a classical linear model
= take into account this autocorrelation

= choose between spatial lag model and spatial error model (or an
extended linear model).

These two models can be combined in a single model of the form :

Y = pWiY +XB+n (11)
n = MMhn+e
e ~ N(0,0%)),

where W cannot be equal to W5 or X cannot simply be a vector of ones
(for identifiability).
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Choosing Between Spatial Lag and Spatial Error models

(2/2)

The problem with choosing between the two models can be expressed as two
hypothesis tests :

HO . P = 07
H1 . 14 7£ 0

Hoi )\:07

1st test : { Hy - A£0

and 2nd test : {

m Hp kept for both tests = keep a classical linear model, there is no spatial
autocorrelation of the residuals.

m Hy kept for the first test and H; non-rejected for the second test = spatial
error model.

m Hy kept for the second test and H; non-rejected for the first test = spatial
lag model.

In practice :
m These tests are carried using the Lagrange multiplier test.
m Another possibility : use the AIC criteria.
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Example Las Rosas (1/16)

model2.1lm_scaled <- 1m(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scal
+I(slope_scaled~2)+I(accu*hshade), data=Xutm)
Im.LMtests (model2.1m_scaled,W,test=c("LMlag","LMerr","SARMA"))

##

## Lagrange multiplier diagnostics for spatial dependence

##

## data:

## model: lm(formula = YIELD_scaled ~ N + accu + aspect + I(accu *
## slope_scaled) + I(slope_scaled~2) + I(accu * hshade), data = Xutm)
## weights: W

##

## LMlag = 3696.2, df = 1, p-value < 2.2e-16
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Example Las Rosas (2/16)

##

## Lagrange multiplier diagnostics for spatial dependence

##

## data:

## model: 1lm(formula = YIELD_scaled ~ N + accu + aspect + I(accu *
## slope_scaled) + I(slope_scaled~2) + I(accu * hshade), data = Xutm)
## weights: W

##

## LMerr = 3893.5, df = 1, p-value < 2.2e-16

##

##

## Lagrange multiplier diagnostics for spatial dependence

##

## data:

## model: Ilm(formula = YIELD_scaled ~ N + accu + aspect + I(accu *
## slope_scaled) + I(slope_scaled~2) + I(accu * hshade), data = Xutm)
## weights: W

##

## SARMA = 3898.9, df = 2, p-value < 2.2e-16
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Example Las Rosas (3/16)

AIC = we prefer the spatial error model.

The yield at one location is mainly driven by the values of the explanatory
variables at this location.

If we assume interaction (competition) between corn plants, we should
prefer the spatial lag model.
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Example Las Rosas (4/16)

Improve the spatial error model by performing model selection.

m Try to remove explanatory variables or interactions between them and
to include variables which are not present in mod.err.

m AIC criteria to select the best model.

m We remove the interaction accu*slope_scaled, and we include the
variable elev which has been scaled.

Xutm$elev_scaled <- (Xutm$elev-mean(Xutm$elev))/sd(Xutm$elev)

f <- as.formula("YIELD_scaled ~ N + accu + aspect +I(slope_scaled~2)+
I (accuxhshade)+elev_scaled")

mod.err8 <- errorsarlm(f,data=Xutm,listw=W)

summary (mod . err8)
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Example Las Rosas (5/16)

##

## Call:errorsarlm(formula = f, data = Xutm, listw = W)
##

## Residuals:

## Min 1Q Median 3Q Max

## -1.2008215 -0.1072744 0.00351563 0.1118625 0.6940611
##

## Type: error

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.6597909 0.1517124 4.3490 1.368e-05
## N 0.0019562 0.0001116 17.5294 < 2.2e-16
## accu 0.5553112 0.1388971 3.9980 6.388e-05
## aspect -0.1716027 0.0409821 -4.1873 2.823e-05
## I(slope_scaled™2) -0.1272388 0.0357075 -3.5634 0.0003661
## I(accu * hshade) -0.6360292 0.1619698 -3.9268 8.607e-05
## elev_scaled -0.3653518 0.1443791 -2.5305 0.0113899
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Example Las Rosas (6/16)

##
## Lambda: 0.90054, LR test value: 1976, p-value: < 2.22e-16
## Asymptotic standard error: 0.012869

#i# z-value: 69.977, p-value: < 2.22e-16
## Wald statistic: 4896.8, p-value: < 2.22e-16
##

## Log likelihood: 373.6497 for error model

## ML residual variance (sigma squared): 0.031777, (sigma: 0.17826)
## Number of observations: 1704

## Number of parameters estimated: 9

## AIC: -729.3, (AIC for 1lm: 1244.7)
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Example Las Rosas (7/16)

We check that the assumptions are verified on the residuals of mod.errs8.
ks.test (mod.err8$residuals, "pnorm", mean=0, sd=sd(mod.err8$residuals))

##

## One-sample Kolmogorov-Smirnov test
##

## data: mod.err8$residuals

## D = 0.029614, p-value = 0.1007

## alternative hypothesis: two-sided
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Example Las Rosas (8/16)

Histogram of mod.err8$residuals

Frequency
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I
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Figure 6 — Histogram of residuals of mod.err8.
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Example Las Rosas (9/16)
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Choosing Between Spatial Lag and Spatial Error models

Meili Baragatti

Example Las Rosas (10/16)

Residuals of mod.err
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Figure 8 — Bubble map for residuals of mod.err8.
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Example Las Rosas (11/16)
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Figure 9 — Semi-variogram for the residuals of mod.errs8.
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Example Las Rosas (12/16)

Xutm$res.err8
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Figure 10 — Moran correlogram for residuals of mod.err8.
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Example Las Rosas (13/16)

moran.mc (Xutm@data$res.err8,W,nsim=1000,alternative="greater")

##

## Monte-Carlo simulation of Moran I

#t

## data: Xutm@data$res.err8

## weights: W

## number of simulations + 1: 1001

##

## statistic = -0.065154, observed rank = 1, p-value = 0.999
## alternative hypothesis: greater
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Example Las Rosas (14/16)

pred <- as.data.frame(predict.sarlm(mod.err8))

head (pred)

## fit trend signal
## 1 0.9903291 0.8177455 0.1725836
## 2 0.9004259 0.7922841 0.1081418
## 3 0.8699619 0.7556189 0.1143431
## 4 0.9720662 0.7043677 0.2676985
## 5 1.0043946 0.6304516 0.3739430
## 6 0.9097421 0.5436834 0.3660587
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Example Las Rosas (15/16)

Xutm2 <- Xutm

Xutm2@data$N <- Xutm@data$N + 1

newpred <- as.data.frame(predict.sarlm(mod.err8, newdata=Xutm2, listw = W))
head (newpred)

## fit trend signal
## 1 0.8197017 0.8197017 0
## 2 0.7942404 0.7942404 0
## 3 0.7575751 0.7575751 0
## 4 0.7063240 0.7063240 0
## 5 0.6324078 0.6324078 0
## 6 0.5456396 0.5456396 0

diff <- newpred$fit-pred$fit
Xutm@data$diff <- diff
spplot (Xutm, "diff", col.regions=brewer.pal(9,"Oranges"),
cex=.2%(1:5), aspect=1/2, main="Predicted differences of yield
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Example Las Rosas (16/16)

Predicted differences of yield

-0.5252,-0.2446
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Figure 11 — Bubble map for the predicted differences of yield when N is increased
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SN LG R CETRV GG Classical Linear Model versus Extended Linear Model

Classical linear model versus extended linear model (1/2)

Y quantitative variable to explain, explanatory variables quantitative or

qualitative :
Y=XB+e with e~ N(0,5°)). (12)

Possible extensions
On the variance-covariance matrix of the residuals (among others).

In classical linear models :
m The residuals (therefore the observations) are supposed independent.

m The residuals are supposed homoscedastic.
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SN LG R CETRV GG Classical Linear Model versus Extended Linear Model

Classical linear model versus extended linear model (2/2)

Y =XB+¢ with e ~ N(0,A). (13)

If A is diagonal, but with varying coefficients on the diagonal, =
heteroscedasticity.

If A has non-null coefficients outside the diagonal = correlation
between the residuals, dependence structure of the residuals. This
dependence can be temporal, spatial or more general.

In practice, once a modelisation has been chosen

m Parameters of these extended linear models (regression coefficients
and coefficients of the variance-covariance matrix) estimated using the
maximum likelihood estimators.

m Numerically obtained by solving an ordinary least-squares problem.
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LT L ST (el
Modelling Spatial Correlation

Extended linear model vs regression models for spatially
autocorrelated data

m Models for spatially autocorrelated data : special cases of extended
linear models.

m In extended linear models A can take any form.

m In the regression models designed for spatially autocorrelated data, the
form of A is enforced by the model.

m Regression models for spatially autocorrelated data often more
intuitive than extended linear models.
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Extended Linear Models Modelling Spatial Correlation

Choosing the modelisation of the spatial dependency (1/2)

Look at the form of the semi-variogram

m Choosing the form of the variance-covariance matrix A < to choose a
semi-variogram pattern.

m The form of the empirical semi-variogram can guide us to choose a
semi-variogram pattern.

Model Formula (p the range)

Exponential ~v(d,p) =1 —exp(—d/p)

Gaussian v(d,p) =1 —exp [ — (d/p)?]

Linear v(d,p)=1-— (1 —d/p)l(d < p)

Rational quadratic  ~(d, p) = (d/p)?/[1+ (d/p)?]

Spherical v(d,p) =1—[1—1.5(d/p) +0.5(d/p)*|1(d < p)

Table 1 — Some isotropic semi-variogram models for spatial correlation structures.

Use classical model selection methods

AIC, BIC, tests between nested models.
Models for Spatial Data 67/78
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Modelling Spatial Correlation
Choosing the modelisation of the spatial dependency (2/2)

~ Spher_0.5 = - Spher_0.7 — Spher_0.9 — B0 -+ Exp_07 = Bxp_09 ~ Ratio_05 = - Ratio_0.7 = Ratio_09

~ Gaus_05 - - Gaus_0.7 ~ Gaus_09

Figure 12 — Different semi-variogram patterns : Spherical, Exponential, Rational
quadratic, Linear and Gaussian. Each pattern has a nugget of 0.1. The value of
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Modelling Spatial Correlation
Example Las Rosas (1/7)

library(nlme)
model2.1m <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I(accu*hshade), data=Xutm)
modSpher <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I (accuxhshade), data=Xutm,
correlation=corSpher (form="x+y,nugget=T))
modLin <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I(accu*hshade), data=Xutm,
correlation=corLin(form="x+y,nugget=T))
modRatio <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I (accuxhshade), data=Xutm,
correlation=corRatio (form="x+y,nugget=T))
modGaus <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I(accuxhshade), data=Xutm,
correlation=corGaus (form="x+y,nugget=T))
modExp <- gls(YIELD_scaled ~ N + accu + aspect + I(accu*slope_scaled)
+I(slope_scaled~2)+I(accu*hshade), data=Xutm,
correlation=corExp(form="x+y,nugget=T))
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Modelling Spatial Correlation
Example Las Rosas (2/7)

AIC(modSpher,modLin,modRatio,modGaus ,modExp)

## df AIC
## modSpher 10 -837.3943
## modLin 10 -830.0858
## modRatio 10 -783.4707
## modGaus 10 -761.8102
## modExp 10 -832.0582

anova(model2.1lm,modSpher)

## Model df AIC BIC logLik Test L.Ratio p-value
## model2.1lm 1 8 1463.0420 1506.5349 -723.5210
## modSpher 2 10 -837.3943 -783.0281 428.6972 1 vs 2 2304.436 <.0001

VarioSpher_raw <- Variogram(modSpher, form =~ LONGITUDE + LATITUDE,
robust = TRUE, maxDist = 350, resType = "pearson")
VarioSpher_normalized <- Variogram(modSpher, form =~ LONGITUDE + LATITUDE,
robust = TRUE, maxDist = 350, resType = "normalized
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Extended Linear Models Modelling Spatial Correlation

Semivariogram

Example Las Rosas
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Figure 13 — Semi-variogram for the raw residuals of modSpher.
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Extended Linear Models Modelling Spatial Correlation

Example Las Rosas

Semivariogram
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Figure 14 — Semi-variogram for the studentized residuals of modSpher.
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Modelling Spatial Correlation
Example Las Rosas(5/7)

Normalized residuals of modSpher
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Figure 15 — Bubble map for residuals of modSpher.
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Modelling Spatial Correlation
Example Las Rosas (6/7)

moran.mc (Xutm@data$resSpherNorm,W,nsim=1000,alternative="greater")

##

## Monte-Carlo simulation of Moran I

#t

## data: Xutm@data$resSpherNorm

## weights: W

## number of simulations + 1: 1001

##

## statistic = -0.026172, observed rank = 14, p-value = 0.986
## alternative hypothesis: greater
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Modelling Spatial Correlation
Example Las Rosas (7/7)

ks.test (Xutm@data$resSpherNorm, "pnorm", mean=0, sd=sd(Xutm@data$resSpherNor

##

## One-sample Kolmogorov-Smirnov test
##

## data: Xutm@data$resSpherNorm

## D = 0.03055, p-value = 0.08311

## alternative hypothesis: two-sided
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Modelling Spatial Correlation
Example Las Rosas (8/7)

Studentized residuals of modSpher

Frequency
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Figure 16 — Histogram of residuals of modSpher.
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Extended Linear Models Modelling Spatial Correlation

Remark

In practice

m Easier to use a regression model designed for spatially autocorrelated
data, and often more intuitive.

m If one of these two models does not give a satisfactory result, you can
try an extended linear model = choose the form of A yourself, using
the form of the semi-variogram or criteria like AIC.
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