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Introduction

allocation of n observations into k pre existing groups
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Example data

Iris data (FISHER, 1936)
3 species (50 obs/sp)

I. setosa
I. versicolor
I. virginica

4 variables
sepal length
sepal width
petal length
petal width
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Linear predictive discriminant analysis

Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Two populations/one variable

Example
I. versicolor and I. virginica
petal length

Species l. versicolor l. virginica
mean 4.260 5.552

standard-deviation 0.470 0.552

Assumptions
normality
homogeneity of within group variance

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Two populations/one variable

σ2 = (49)(0.470)2 + (49)(0.552)2

49 + 49 = 0.263

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

versicolor virginica

Petal.Length

D
en

si
ty

m̂1 x0 m̂2
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Classification rules

Threshold
x0 = (m̂1 + m̂2)/2

Distance

d2
1i =

(xi − m̂1
σ̂

)2
et d2

2i =
(xi − m̂2

σ̂

)2

Density

f1(xi ) = 1√
2π

exp
[
−1
2

(xi − m̂1
σ̂

)2]

f2(xi ) = 1√
2π

exp
[
−1
2

(xi − m̂2
σ̂

)2]

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Classification rules

Posterior probability

P(A1 | xi ) = f1(xi )
f1(xi ) + f2(xi )

=
exp

(
−1

2d2
1i

)
∑2

k=1 exp
(
−1

2d2
ki

)

P(A2 | xi ) = f2(xi )
f1(xi ) + f2(xi )

=
exp

(
−1

2d2
2i

)
∑2

k=1 exp
(
−1

2d2
ki

)

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Classification rules

Assign unit i to population 1 if :

xi < x0
d2

1i < d2
2i

f1(xi ) > f2(xi )
P(A1 | xi ) > P(A2 | xi )

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Example

xi = 4.7

xi = 4.7 < x0 = 4.91
d2

1i = 0.74 < d2
2i = 2.76

f1(xi ) = 0.54 > f2(xi ) = 0.20
P(A1 | xi ) = 0.54

0.54 + 0.20 = 0.73

P(A2 | xi ) = 0.20
0.54 + 0.20 = 0.27

⇒ xi is allocated to population 1

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Linear predictive discriminant analysis

Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Two populations/two variables

Example
I. versicolor and I. virginica
petal length and petal width

Assumptions
normality
homogeneity of within group covariance matrix

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Two populations/two variables

l. versicolor l. virginica
mean length 4.260 5.552
mean width 1.326 2.026

covariance matrix
[
0.2208 0.0731
0.0731 0.0391

] [
0.3046 0.0488
0.0488 0.0754

]

∑̂
=
(
49
∑̂

1
+ 49

∑̂
2

)
/98 =

[
0.2627 0.0610
0.0610 0.0573

]

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Distribution normale à 2 dimensions

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Classification rules

Density

f1(x1i , x2i ) = 1
2πσ̂x1 σ̂x2

√
(1− ρ̂2)

exp
[
−1
2d2

1i

]

f2(x1i , x2i ) = 1
2πσ̂x1 σ̂x2

√
(1− ρ̂2)

exp
[
−1
2d2

2i

]

Yves Brostaux Pattern recognition on spatial data
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Two populations/one variable
Two populations/two variables
g populations/p variables
Error rates

Classification rules

Distance (Mahalanobis)

d2
1i = 1

1− ρ̂2

[(x1i − m̂11
σ̂x1

)2

−2ρ̂
(x1i − m̂11

σ̂x1

)(x2i − m̂12
σ̂x2

)
+
(x2i − m̂12

σ̂x2

)2]

d2
2i = 1

1− ρ̂2

[(x1i − m̂21
σ̂x1

)2

−2ρ̂
(x1i − m̂21

σ̂x1

)(x2i − m̂22
σ̂x2

)
+
(x2i − m̂22

σ̂x2

)2]

Yves Brostaux Pattern recognition on spatial data
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Distance (Mahalanobis)

d2
1i = [xi − m̂1]′ Σ̂−1 [xi − m̂1]

d2
2i = [xi − m̂2]′ Σ̂−1 [xi − m̂2]

xi =
[

x1i
x2i

]
m̂1 =

[
m̂11
m̂12

]
m̂2 =

[
m̂21
m̂22

]
Σ̂ =

[
σ̂2

x1 µ̂11
µ̂11 σ̂2

x2

]
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Posterior probability

P(A1 | xi ) = f1(xi )
f1(xi ) + f2(xi )

=
exp

(
−1

2d2
1i

)
∑2

k=1 exp
(
−1

2d2
ki

)

P(A2 | xi ) = f2(xi )
f1(xi ) + f2(xi )

=
exp

(
−1

2d2
2i

)
∑2

k=1 exp
(
−1

2d2
ki

)
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Classification rules

Assign unit i to population 1 if :

d2
1i < d2

2i
f1(xi ) > f2(xi )
P(A1 | xi ) > P(A2 | xi )
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Example

xi =
[
4.7
1.6

]

d2
1i = 1.422 < d2

2i = 3.972
f1(xi ) = 0.734 > f2(xi ) = 0.205
P(A1 | xi ) = 0.734

0.734 + 0.205 = 0.782

P(A2 | xi ) = 0.205
0.734 + 0.205 = 0.218

⇒ xi is allocated to population 1
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Geometric interpretation

The limit between the two populations is defined by the set of
points which are at equal (Mahalanobis’) distance from the
centroïds of the populations.

This set of points draw a straight line between the populations,
which pass through the intersection of the ellipses of equal
Mahalanobis’ distance, giving its name to the method (linear
discriminant analysis).
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g populations/p variables

Example
I. versicolor, I. virginica, I. setosa
petal length and petal width

Assumptions
normality
homogeneity of within group covariance matrix
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Distance (for population h)

d2
hi = [xi − m̂h]′ Σ̂−1 [xi − m̂h]

Density (for population h)\

fh(xi ) = 1√
(2π)p|Σ̂|

exp
[
−1
2d2

hi

]

Posterior probability (for population h)\

P(Ah | xi ) =
exp

(
−1

2d2
hi

)
∑g

k=1 exp
(
−1

2d2
ki

)
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Likelihood ratio\

fh(x)
fl (x) =

(
1/
√

(2π)p|Σ̂|
)
exp

[
−1

2(x − m̂h)′Σ̂−1(x − m̂h)
]

(
1/
√

(2π)p|Σ̂|
)
exp

[
−1

2(x − m̂l )′Σ̂
−1(x − m̂l )

]
Log-likelihood ratio\

loge(Lhl =
(
m̂hΣ̂−1x− 1

2m̂
′
hΣ̂−1m̂h

)
−
(
m̂lΣ̂

−1x− 1
2m̂
′
lΣ̂
−1m̂l

)
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Example with R

# load data (internal)
data(iris)

# select only petal length and width
iris4 <- subset(iris, select=3:5)

# load package
library(MASS)

# adjust the LDA
iris.lda <- lda(Species~., data=iris4)
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Example with R

## Call:
## lda(Species ~ ., data = iris4)
##
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333333 0.3333333 0.3333333
##
## Group means:
## Petal.Length Petal.Width
## setosa 1.462 0.246
## versicolor 4.260 1.326
## virginica 5.552 2.026
##
## Coefficients of linear discriminants:
## LD1 LD2
## Petal.Length 1.544371 -2.161222
## Petal.Width 2.402394 5.042599
##
## Proportion of trace:
## LD1 LD2
## 0.9947 0.0053
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Canonical discriminant analysis

Linear discriminant analysis can also be seen as a factor analysis
(like PCA), which aims at creating linear combinations of the
original variables that gives the best possible separation between the
groups.

Canonical variables are then calculated by an similar procedure to
PCA, but the criteria of maximum variance of the resulting
components is replaced by the maximum separation between the
groups.

F = σ2
Between
σ2

Within
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Linear discriminant functions

# Linear discriminants coefficients
iris.lda$scaling

## LD1 LD2
## Petal.Length 1.544371 -2.161222
## Petal.Width 2.402394 5.042599

# Separation between populations
iris.lda$svd^2/sum(iris.lda$svd^2)

## [1] 0.99470499 0.00529501
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Linear discriminant functions

plot(iris.lda, abbrev=1)
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Linear discriminant scores

iris.pred <- predict(iris.lda)
# class prediction (class with maximum post prob)
head(iris.pred$class, n=5)

## [1] setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica

# posterior probability of each class
head(iris.pred$posterior, n=5)

## setosa versicolor virginica
## 1 1 8.750491e-12 4.742801e-26
## 2 1 8.750491e-12 4.742801e-26
## 3 1 2.640992e-12 9.514213e-27
## 4 1 2.899331e-11 2.364269e-25
## 5 1 8.750491e-12 4.742801e-26
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Linear discriminant scores

# Canonical scores
head(iris.pred$x, n=5)

## LD1 LD2
## 1 -6.042418 0.05692487
## 2 -6.042418 0.05692487
## 3 -6.196856 0.27304711
## 4 -5.887981 -0.15919736
## 5 -6.042418 0.05692487
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Linear discriminant scores

ldahist(iris.pred$x[,1], iris$Species)
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Definitions

Optimal error rate
Theoretical error rate when affectation rule is based on real
population parameters. Function of Mahalanobis’ distance between
centroids of populations.

Actual error rate
Observed error rate when affecting new individuals from the same
mix of populations used to create affectation rules

Expected actual error rate
Mathematical expectation of the actual error rate
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Parametric estimators

Only for some situations

function of the classification rule
function of the (unknown) parameters of the populations

Example : LCF, g = 2, p1 = p2
Optimal error rate : eo = Φ(−∆/2)
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Non parametric estimators

Percent of misclassified observations
resubstitution
holdout

training sample
test sample

leave-n-out
K-cross validation
jackknife

bootstrap
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Prediction error
Resubstitution confusion matrix

iris.err <- table(iris4$Species, iris.pred$class)
iris.err

##
## setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 48 2
## virginica 0 4 46

# resubstitution error rate
1 - sum(diag(iris.err))/sum(iris.err)

## [1] 0.04
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Prediction error

Cross validated confusion matrix

# compute lda with cross validation
iris.cv <- lda(Species~., data=iris4, CV=TRUE)

iris.ecv <- table(iris4$Species, iris.cv$class)
iris.ecv

##
## setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 48 2
## virginica 0 4 46
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