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Basics

Classification rule
Affect observation i to the population h which is the most
represented amongst the r nearest neighbours of this observation

Distance
euclidian
Mahalanobis’
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Pros/cons

Pros
no assumptions about distributions
easily adapt to complex concepts

Cons
no model ⇒ need a new computation for each new prediction
can be slow for very high number of individuals
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Example with R

library(class)

# separate data set into training and test sets
set.seed(123)
train <- sample(1:150, 125, replace=FALSE)
iris.trn <- iris4[train,]
iris.tst <- iris4[-train,]

# predict class for test set
cltest <- knn(train=iris.trn[,1:2],

test=iris.tst[,1:2],
cl=iris.trn$Species, k = 5)
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Example with R

# confusion matrix
knn.cm <- table(iris.tst$Species, cltest)
knn.cm

## cltest
## setosa versicolor virginica
## setosa 7 0 0
## versicolor 0 8 0
## virginica 0 1 9

# actual error rate
1 - sum(diag(knn.cm))/sum(knn.cm)

## [1] 0.04
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Basics

Construction of the classifier
Recursively partition the observations into groups of increasing
homogeneity regarding their populations’ distribution.

= decision tree
Classification rules

Follow the decision path from the root of the tree to its leaves
Assign observation to the population with the highest
estimated posterior probability
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Methods

Number of choices at each node
Type of decision (univariate, multivariate)
Homogeneity criteria
Stopping rule
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CART method

Dichotomic univariate choices
Homogeneity/splitting criteria : Entropy/Shannon’s Index or
Gini’s index
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Spliting criteria

Entropy or
Shannon’s index

IShannon(E ) =
g∑

j=1
−nj.

n..
log2

nj.
n..

Gini’s index

IGini (E ) =
g∑

j=1

nj.
n..

(1− nj.
n..

)

Choose the split which maximize the information gain :

gain(E ,A) = ∆I = I(E )−
p∑

i=1

n.i
n..

I(Ei )
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Example with R

library(rpart)
iris.rp <- rpart(Species~., data=iris)
iris.rp

## n= 150
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
## 2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *
## 3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)
## 6) Petal.Width< 1.75 54 5 versicolor (0.00000000 0.90740741 0.09259259) *
## 7) Petal.Width>=1.75 46 1 virginica (0.00000000 0.02173913 0.97826087) *
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Plotting the tree

library(rpart.plot)
rpart.plot(iris.rp)

Petal.Length < 2.4

Petal.Width < 1.8

setosa
.33  .33  .33

100%

setosa
1.00  .00  .00

33%

versicolor
.00  .50  .50

67%

versicolor
.00  .91  .09

36%

virginica
.00  .02  .98

31%

yes no
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Optimal size

Fully grown trees tend to overfit data (produce non significant
splits), which lower global the prediction performance.

Stopping rules
minimal size
minimal gain
significance test (χ2)

Pruning
cut parts of a full grown tree to improve expected error
based on penalties on error
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rpart R command

rpart(formula, data, parms, control, ...)

formula : Y ∼ X1 + X2 + . . .+ Xp
parms : list with

prior component (vector of prior probabilities)
split component (splitting criteria, gini or information)

control : list with
minsplit minimum number of observations in a node to split
it
minbucket minimum number of observations in any terminal
node
cp complexity parameter. minimum improvement of the
splitting criteria to attempt a split
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Bigger example : back to climatic typology

# get worldwide bioclimatic data
library(raster)
wclim <- getData('worldclim', res=10, var='bio', path="../")

# loading countries borders
library(maptools)
data(wrld_simpl) # simplified world contries borders
# selection of west european region
eur_simpl <- wrld_simpl[wrld_simpl@data$SUBREGION==155,]

# crop climatic data for western europe
climEur <- crop(wclim, bbox(eur_simpl))
climEur <- mask(climEur, eur_simpl)

# extract data for further analysis
climdat <- getValues(climEur)
climdat <- na.omit(as.data.frame(climdat))

# index of deleted NA values
nai <- as.vector(attr(na.omit(climdat), "na.action"))
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Bigger example : back to climatic typology

climClust <- raster("climTypo10.tif")

# extract groups data
groups <- getValues(climClust)
groups <- na.omit(groups)

plot(climClust, col=rainbow(length(unique(groups))))
plot(eur_simpl, add=TRUE)
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clim.rp <- rpart(as.factor(groups)~., data=climdat)

rpart.plot(clim.rp)

# resubstitution confusion matrix
clim.pred <- predict(clim.rp, type="class")
table(groups, clim.pred)
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## clim.pred
## groups 1 2 3 4 5 6 7 8 9 10
## 1 595 9 17 0 2 12 22 0 0 0
## 2 29 813 0 0 1 31 0 22 0 0
## 3 15 1 666 0 35 32 10 0 0 3
## 4 0 0 0 190 2 2 0 11 0 0
## 5 0 0 9 0 201 2 1 0 4 0
## 6 13 11 12 1 27 636 5 32 0 12
## 7 16 0 2 8 0 0 151 0 0 0
## 8 0 9 0 14 12 1 0 482 0 0
## 9 0 0 0 10 0 0 0 0 100 0
## 10 0 0 38 3 18 0 0 0 0 449
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Pruning the tree

Cost-complexity pruning evaluate the performance of sequences
of (sub)trees, defined by an increasing cost-complexity penalty α.

Rα(T ) = R(T ) + α|T̃ |

with R(T ) the resubstitution error of the tree T and |T̃ | the
number of terminal nodes.

For each α the algorithme search the subtree with the minimum
Rα(T ) and estimate by cross validation the associated error.

The cost-complexity value associated with the minimal CV error is
then used to prune the initial tree to a smaller one with a better
expected error rate.
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Cost-complexity pruning

printcp(clim.rp)

##
## Classification tree:
## rpart(formula = as.factor(groups) ~ ., data = climdat)
##
## Variables actually used in tree construction:
## [1] bio11 bio13 bio17 bio18 bio2 bio3 bio4 bio5 bio7 bio8 bio9
##
## Root node error: 3903/4799 = 0.81329
##
## n= 4799
##
## CP nsplit rel error xerror xstd
## 1 0.170894 0 1.00000 1.00000 0.0069164
## 2 0.144248 1 0.82911 0.82936 0.0083164
## 3 0.110684 3 0.54061 0.54163 0.0088115
## 4 0.058673 4 0.42993 0.43095 0.0084685
## 5 0.042788 5 0.37125 0.37586 0.0081770
## 6 0.039201 6 0.32847 0.33359 0.0078919
## 7 0.029977 7 0.28926 0.29439 0.0075741
## 8 0.024596 8 0.25929 0.26441 0.0072923
## 9 0.014604 10 0.21009 0.21752 0.0067730
## 10 0.014348 11 0.19549 0.21086 0.0066904
## 11 0.013067 12 0.18114 0.20010 0.0065517
## 12 0.011530 14 0.15501 0.18575 0.0063563
## 13 0.011273 15 0.14348 0.17499 0.0062012
## 14 0.010000 16 0.13221 0.16372 0.0060301
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Cost-complexity pruning

plotcp(clim.rp)
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Pros & cons

Pros
Quick even on big data sets
Easily readable and interpretable
Classification rules → simple logical rules

Cons
Instability ⇒ Random forests
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Basics

CART tree node selection is sensitive to variation in the training
data.

Instead of pruning the tree to remove this instability, Random
Forests promote this instability by using resampling of the sample
and of the attributes to build multiple tree predictors (a forest)
which are pooled to increase the robustness of the prediction.
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Algorithm

Starting with a training sample with n observations, p descriptive
attributes and a class variable Y

1 For each tree, a bootstrap sample of the original data is used
2 At each node, the attributes selection starts with a random

choice of mtry attributes, followed by a classical selection based
on the partition performance

3 All this is repeated to build ntree trees

Prediction is done by aggregating the results of the ntree trees
(mean for quantitative Y, mode for qualitative Y).
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Example with R

library(randomForest)
clim.rf <- randomForest(as.factor(groups)~.,

importance=TRUE,
ntree=1000,
data=climdat)

clim.rf
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##
## Call:
## randomForest(formula = as.factor(groups) ~ ., data = climdat, importance = TRUE, ntree = 1000)
## Type of random forest: classification
## Number of trees: 1000
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 1.31%
## Confusion matrix:
## 1 2 3 4 5 6 7 8 9 10 class.error
## 1 645 7 2 0 0 3 0 0 0 0 0.018264840
## 2 1 891 0 0 0 1 0 3 0 0 0.005580357
## 3 2 0 752 0 4 1 1 0 0 2 0.013123360
## 4 0 0 0 200 0 0 0 3 2 0 0.024390244
## 5 0 0 3 0 212 0 0 0 2 0 0.023041475
## 6 4 2 0 0 1 739 0 2 0 1 0.013351135
## 7 0 0 1 0 0 0 176 0 0 0 0.005649718
## 8 0 4 0 3 0 1 0 510 0 0 0.015444015
## 9 0 0 0 1 0 0 0 0 109 0 0.009090909
## 10 0 0 6 0 0 0 0 0 0 502 0.011811024
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Pros & cons

Pros
Lose the simplicity and readability of single trees
can be computer intensive for big datasets

Cons
better robustness and prediction performance
new information available

out-of-bag (OOB) error
variable importance
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Out-of-bag (OOB) error

Each tree of the random forest is build with a training set obtained
by bootstrapping (sample of the same size with replacement) the
originial dataset.

In such sample, some observations are present more than one time,
and conversely some observations are absent (out-of-bag) from the
bootstrap sample (about 33% on average)

Those OOB observations are used as a test set for the
corresponding tree to estimate the OOB error rate.
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Variable importance

The importance (influence) of a variable in the RF prediction
process is estimated by two different methods

by comparing the OOB performance on the original data and a
sample where the value of the variable are randomly
permutated (MeanDeacreaseAccuracy);
by summing all the contribution of the variable to the decrease
of the splitting criteria (MeanDecreaseGini)
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Example with R

# need to use to argument importance=TRUE
# while building the random forest
varImpPlot(clim.rf)
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Back to spatial

climRF <- raster(climEur)
values(climRF)[-nai] <- predict(clim.rf)
plot(climRF, col=rainbow(length(unique(groups))))
plot(eur_simpl, add=TRUE)
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Spatial Smoothing of the prediction

As classical classification methods don’t use spatial information to
predict the classes, you can get local artefacts (lone pixel of one
class surrounded by another class), especially in noisy environment.

You can process the raw prediction a posteriori to limit those
artifacts by a spatial smoothing. A spatial smoothing apply a
function to a defined neighborhood of a point to restimate the value
of the point
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# definition of the smoothing window
# 3 x 3 square, constant weight
windw <- matrix(rep(1, 9), nrow=3)

# take the majority class in the window for each pixel
climRF.sm <- focal(climRF, w=windw, fun=modal,

na.rm=T, pad=F)
plot(climRF.sm, col=rainbow(length(unique(groups))))
plot(eur_simpl, add=TRUE)
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